

TEST REPORT

Product Name Uninterruptible Power System --

Modular UPS

NTRM100/50X, NTRM200/50X, NTRM300/50X, NTRM400/50X,

Model Number : NTRM500/50X, NTRM80/40X,

NTRM160/40X, NTRM240/40X, Module: NTPM50X, NTPM40X

Prepared for : NETCON ENTERPRISE PVT LTD

Address : Industrial Estate, Kathirvedu, Puzhal, Chennai Tamil

Nandu, India- 600066.

Prepared by : EMTEK (SHENZHEN) CO., LTD.

Address : Bldg 69, Majialong Industry Zone, Nanshan District,

Shenzhen, Guangdong, China

Tel: (0755) 26954280 Fax: (0755) 26954282

Report Number : ENS2407180144P00101R

TRF No.: IEC62040_3C Page 1 of 71 Report No.: ENS2407180144P00101R Ver.1.0

TEST REPORT IEC 62040-3

Uninterruptible power systems -- Modular UPS Part 3: Method of specifying the performance and test requirements

Report Number. ENS2407180144P00101R

Name of Testing Laboratory EMTEK (SHENZHEN) CO., LTD.

preparing the Report Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen,

Guangdong, China

Applicant's name...... NETCON ENTERPRISE PVT LTD

Address Industrial Estate, Kathirvedu, Puzhal, Chennai Tamil Nandu, India-

600066.

Test specification:

Standard..... IEC 62040-3:2011;

EN 62040-3:2011

Test procedure CB Scheme

Non-standard test method N/A

Test Report Form No. IEC62040_3C

Test Report Form(s) Originator: Eurofins Electrosuisse Product Testing AG

Master TRF Dated 2018-08-09

Copyright © 2018 IEC System of Conformity Assessment Schemes for Electrotechnical Equipment and Components (IECEE System). All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the IECEE is acknowledged as copyright owner and source of the material. IECEE takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

If this Test Report Form is used by non-IECEE members, the IECEE/IEC logo and the reference to the CB Scheme procedure shall be removed.

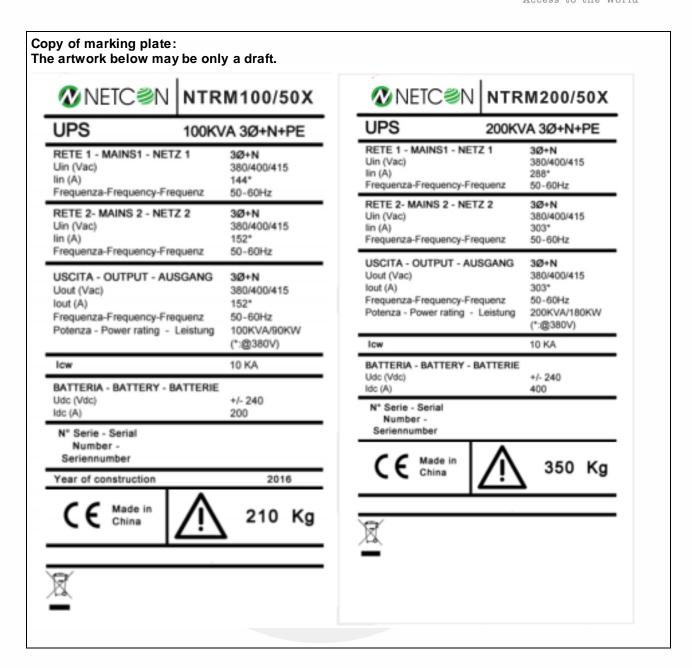
This report is not valid as a CB Test Report unless signed by an approved CB Testing Laboratory and appended to a CB Test Certificate issued by an NCB in accordance with IECEE 02.

General disclaimer:

The test results presented in this report relate only to the object tested.

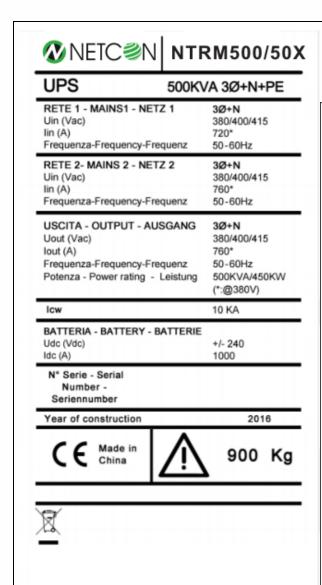
This report shall not be reproduced, except in full, without the written approval of the Issuing CB Testing Laboratory. The authenticity of this Test Report and its contents can be verified by contacting the NCB, responsible for this Test Report.

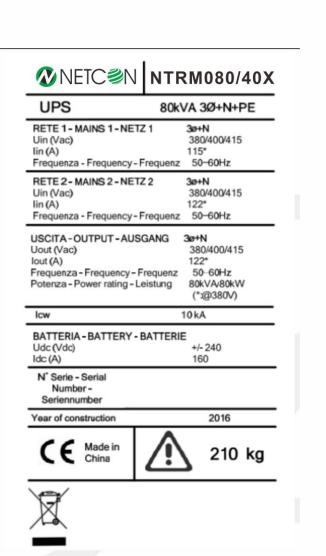
TRF No.: IEC62040_3C Page 2 of 71 Report No.: ENS2407180144P00101R Ver.1.0


Г			
•	ninterruptible Power System Modular UPS		
Trade Mark	₩ NETC ® N		
Manufacturer: Sa	ame as applicant		
N ⁻	NTRM100/50X, NTRM200/50X, NTRM300/50X, NTRM400/50X, NTRM500/50X, NTRM80/40X, NTRM160/40X, NTRM240/40X, Module: NTPM50X, NTPM40X		
Ratings Se	ee copy of marking plate		
Responsible Testing Laboratory (as app	licable), testing procedure and testing location(s):		
☐ Testing Laboratory:	EMTEK (SHENZHEN) CO., LTD.		
Testing location/ address	: Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China		
Tested by (name, function, signature)	Alan Zhang / Alan Zhang Engineer William Guo Manager William Gwo Manager		
Approved by (name, function, signature)	William Guo * William Guo Manager		
	53114		
☐ Testing procedure: CTF Stage 1:			
Testing location/ address:			
Tested by (name, function, signature)	:		
Approved by (name, function, signature):			
☐ Testing procedure: CTF Stage 2:			
Testing location/ address	:		
Tested by (name + signature)	:		
Witnessed by (name, function, signature):		
Approved by (name, function, signature)):		
Testing procedure: CTF Stage 3:			
☐ Testing procedure: CTF Stage 4:			
Testing location/ address:			
Tested by (name, function, signature)	:		
Witnessed by (name, function, signature):		
Approved by (name, function, signature)):		
Supervised by (name, function, signatur	e):		

EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn TRF No.: IEC62040_3C Page 3 of 71 Report No.: ENS2407180144P00101R Ver.1.0

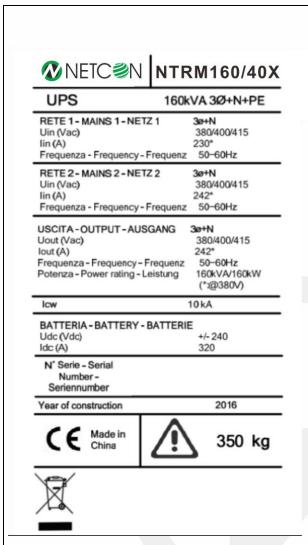
List of Attachments (including a total number of pattachment No. 1: 2 pages of photograph.	pages in each attachment):
Summary of testing:	
Tests performed (name of test and test clause): The submitted samples were found to comply with the requirements of: IEC 62040-3:2011; EN 62040-3:2011 Unless otherwise all tests were performed on model: NTRM300/50X to represent other models.	Testing location: EMTEK (SHENZHEN) CO., LTD. Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China
Summary of compliance with National Difference	s (List of countries addressed):
N/A	
☐ The product fulfils the requirements of IEC 620☐ The product fulfils the requirements of EN 620☐	

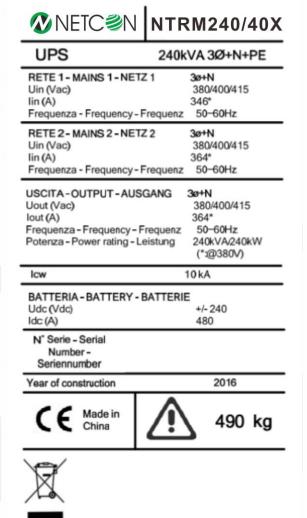

TRF No.: IEC62040_3C Page 5 of 71 Report No.: ENS2407180144P00101R Ver.1.0



WNETC®N NTRM300/50X MINITOWN NTRM400/50X **UPS** 300KVA 3Ø+N+PE RETE 1 - MAINS1 - NETZ 1 3Ø+N **UPS** 400KVA 3Ø+N+PE Uin (Vac) 380/400/415 RETE 1 - MAINS1 - NETZ 1 3Ø+N lin (A) 432* Uin (Vac) 380/400/415 Frequenza-Frequency-Frequenz 50-60Hz 576* RETE 2- MAINS 2 - NETZ 2 3Ø+N Frequenza-Frequency-Frequenz 50-60Hz Uin (Vac) 380/400/415 RETE 2 - MAINS 2 - NETZ 2 3Ø+N 4561 lin (A) Uin (Vac) 380/400/415 Frequenza-Frequency-Frequenz 50-60Hz lin (A) 606* Frequenza-Frequency-Frequenz USCITA - OUTPUT - AUSGANG 3Ø+N USCITA - OUTPUT - AUSGANG 3Ø+N Uout (Vac) 380/400/415 380/400/415 Uout (Vac) lout (A) 456* 606* Frequenza-Frequency-Frequenz 50-60Hz lout (A) Potenza - Power rating - Leistung Frequenza-Frequency-Frequenz 50-60Hz 300KVA/270KW (*:@380V) 400KVA/360kW Potenza - Power rating - Leistung (*:@380V) 10 KA lcw 13kA BATTERIA - BATTERY - BATTERIE BATTERIA - BATTERY - BATTERIE Udc (Vdc) +/- 240 Udc (Vac) +/-240 Idc (A) 600 800 Idc (A) N° Serie - Serial Nº Serie - Serial Number -Seriennumber Seriennumber 2016 Year of construction Year of construction 2016 Made in 900 China China

TRF No.: IEC62040_3C Page 6 of 71 Report No.: ENS2407180144P00101R Ver.1.0





TRF No.: IEC62040_3C Page 7 of 71 Report No.: ENS2407180144P00101R Ver.1.0

Manufacturer: NETCON ENTERPRISE

PVT LTD.

Address: Industrial Estate, Kathirvedu, Puzhal, Chennai Tamil Nandu, India-

600066.

Importer: xxxxxx Address: xxxxxx

Warning label on outer enclosures

WARNING

CHARGED CAPACITORS

DISCHARGE TIME 5 MINUTES AFTER DISCONNECTION OF UPS AND BATTERY

CAUTION

OPERATION INSTRUCTION

HIGH LEAKAGE CURRENT, EARTH CONNECTION ESSENTIAL BEFORE CONNECTING UPS.

DO NOT REMOVE COVERS. THIS SYSTEM IS TO BE SERVICED BY QUALIFIED

SERVICE PERSONNEL ONLY

HAZARDOUS LIVE PARTS INSIDE THIS UPS ARE ENERGIZED FROM THE BATTERY SUPPLY EVEN WHEN THE AC INPUT POWER IS DISCONNECTED.

SEE USER MANUAL FOR INSTALLATION,

OPERATING AND MAINTENANC E INSTRUCTION

DANGER

RISK OF ELECTRIC SHOCK.

TRF No.: IEC62040_3C Page 8 of 71 Report No.: ENS2407180144P00101R Ver.1.0

DO NOT TOUCH UNINSULATED BATTERY TERMINAL.

TEST BEFORE TOUCHING.

DISCONNECTION OF THE EXTERNAL AC & DC SWITCHES IS REQUIRED FOR COMPLETE LOAD POWER OFF OR MAINTENANCE.

OPERATION INSTRUCTION

BATTERY VOLTAGE&CONNECTION MUST COMPLY WITH UPS SPECIFICATION. MANUAL BATTERY DISCHARGE RECOMMENDED FOR EVERY 3 MONTHS CONTINUOUS OPERATION WITHOUT ANY BATTERY DISCHARGE. WARRANTY VOID IF SERIAL NO.PLATE IS DAMAGED.

WARNING: BACKFEED PROTECTION

This system has a control signal available for use with an automatic device, externally located, to protect against backfeeding voltage through the mains Static By pass circuit. If this protection is not used with the switchgear that is used to isolate the by pass circuit, a label must be added to the switchgear to advise service personnel that the circuit is connected to a UPS system.

TRF No.: IEC62040_3C Page 9 of 71 Report No.: ENS2407180144P00101R Ver.1.0

Test item particulars:	Uninterruptible Power System Modular UPS		
Classification of installation and use	Class I and indoor used.		
Supply Connection:	Permanent connection		
Possible test case verdicts:			
- test case does not apply to the test object:	N/A		
- test object does meet the requirement:	P (Pass)		
- test object does not meet the requirement:	F (Fail)		
Testing:			
Date of receipt of test item:	N/A		
Date (s) of performance of tests:	N/A		
General remarks:			
"(See Enclosure #)" refers to additional information ap "(See appended table)" refers to a table appended to the			
Throughout this report a ☐ comma / ☒ point is us	sed as the decimal separator.		
Manufacturer's Declaration per sub-clause 4.2.5 of	ECEE 02:		
The application for obtaining a CB Test Certificate includes more than one factory location and a declaration from the Manufacturer stating that the sample(s) submitted for evaluation is (are) representative of the products from each factory has been provided			
When differences exist; they shall be identified in the	ne General product information section.		
Name and address of factory (ies): Same as applicant			

TRF No.: IEC62040_3C Page 10 of 71 Report No.: ENS2407180144P00101R Ver.1.0

General product information and other remarks:

This report is amended from previous report ENS2111100050S00101R, issued by EMTEK (SHENZHEN) CO., LTD on November 30, 2021, due to below amendments:

- Updated the Applicant, Manufacturer, Factory name to NETCON ENTERPRISE PVT LTD
- Updated the Applicant, Manufacturer, Factory address to No: Industrial Estate, Kathirvedu, Puzhal, Chennai Tamil Nandu, India- 600066.
- Updated the model to NTRM100/50X, NTRM200/50X, NTRM300/50X, NTRM500/50X, NTPM50X
- Updated Trade Mark
- Updated the product Overview of picture.

The original model and new model have the similar constructions, circuit diagram and PCB layout except model name

No any tests need be considered. 1. The equipment is an on-line type of uninterruptible power supply for general use with information technology equipment.

- 2. The UPS is designed as primary, therefore, clearances, creepage distances and distances through insulation from input, output, battery, control circuits to the RS232 of the PC interface are dimensioned for reinforced insulation and suitable distance through insulation. The test samples are pre-production without any serial number.
- 3. Model difference description:

All models are designed with same control logic, constructions, PCB Layout except for UPS module, model name and ratings.

4. This series of UPS generally uses the same circuit diagrams, therefore, input tests were conducted on all model with different Input/output ratings. Unless otherwise specified, other tests are conducted on model NTRM300/50X, considered the worst condition.

TRF No.: IEC62040_3C Page 11 of 71 Report No.: ENS2407180144P00101R Ver.1.0

	IEC 62040-3		
Clause	Requirement + Test	Result - Remark	Verdict

5	ELECTRICAL SERVICE CONDITIONS AND PERFORMANCE		
5.1	General		Р
5.1.1	UPS configuration		Р
	- quantity of UPS units and their topology	Max 6 units for parallel setup, redundancy configuration, Online double conversion UPS	Р
	- redundancy configuration as applicable	Redundancy configuration is available for parallel setup.	Р
	- any mayor UPS switch	Input switch, bypass switch, maintenance switch and output switch and battery switch are optional parts.	Р
	- operator access or restricted access classification in accordance with IEC 62040-1	See appended safety report.	Р
5.1.2	Markings and Instructions		Р
	Marked and supplied with adequate instruction for the installation and operation of the UPS and its controls and indications, or	All required markings are affixed on labels located on the enclosure of UPS.	Р
	Markings and instructions in accordance with sub- clause 4.7 of IEC 62040-1	See appended safety report.	Р
5.1.3	Safety complies with the safety requirements of UPS prescribed in IEC 62040-1	See appended safety report.	Р
5.1.4	Electromagnetic compatibility complies with the requirements of IEC 62040-2	Emission and immunity comply with IEC 62040-2 C3, see separate report	Р
5.2	UPS input specification		Р
5.2.1	Conditions for normal mode operation		Р
	a) rated voltage	380/400/415Vac	Р
	b) r.m.s. voltage variation	176Vac to 276Vac at 100% load	Р
	c) rated frequency	50Hz/60Hz	Р
	d) frequency variation	40-70Hz	Р
	e) for three phases input, voltage unbalance with an unbalance ratio of 5%	(see appended table)	Р
	f) total harmonics distortion (THD) of voltage, according to IEC 61000-2-2	THDu<1% from linear load; THDu<5% from non-linear load	Р
	g) transient voltage; within the electromagnetic immunity levels prescribed in IEC 62040-2	See separate EMC report	Р
5.2.2	Characteristics to be declared by the manufacturer		Р
	a) number of phases	3 phases	Р

TRF No.: IEC62040_3C Page 12 of 71 Report No.: ENS2407180144P00101R Ver.1.0

	IEC 62040-3		
Clause	Requirement + Test	Result - Remark	Verdict
	b) neutral requirements	With neutral	Р
	d) power factor at rated current	0.99pF at 100% load	Р
	e) inrush current characteristics	≤120% of rated current for ≤1 cycles.	Р
	f) maximum continuous current at the worst-case condition	558A	Р
	g) overload current	558A	Р
	h) total harmonic distortion (THD) of current	THDi <3% with full linear load, THDi < 5% with full non-linear load)	Р
	i) minimum short current power capacity; in compliance with: - IEC 61000-3-2 (UPS ≤16A) - IEC 61000-3-12 (16A < UPS ≤75A) - IEC 61000-3-4 (UPS > 75A)		N/A
	j) earth leakage current characteristics	See separate safety report.	Р
	k) a.c. power distribution system compatibility TN, TT or IT):	TN, TN-S, TN-C, TN-C-S, TT (Three-phase, four-wire + PE).	Р
5.2.3	Characteristics and conditions to be identified by the purchaser		Р
	a) pre-existing harmonic voltage distortion when of 75% of IEC 61000-2-2 compatibility level at the intended point of coupling of the UPS	Provided	Р
	b) requirements for compatibility with the characteristics of protective devices of the UPS input supply	Input switch, input fuse, bypass switch, bypass fuse, maintenance switch and output switch and battery switch are optional parts.	Р
	c) requirements for all-pole isolation		Р
	d) stand-by generator characteristics	Compatible with generator of rating typically >1.5x UPS KVA.	Р
5.3	UPS output specification		Р
5.3.1	Conditions for the UPS to supply a load		Р
	- the input conditions of 5.2.1 being satisfied, or		Р
	- the energy storage system being available		Р
5.3.2	Characteristics to be declared by the manufacturer		Р
	a) performance classification in accordance with 5.3.4		Р
	b) rated voltage and steady state variation	AC380/400/415V, ±1%	Р
	c) rated frequency and free running variation	Synchronization status, tracking bypass input (normal mode), 50Hz / 60Hz ± 0.05% (stored energy mode)	Р
	d) maximum frequency range	40Hz-70Hz	P

TRF No.: IEC62040_3C Page 13 of 71 Report No.: ENS2407180144P00101R Ver.1.0

	IEC 62040-3		
Clause	Requirement + Test	Result - Remark	Verdict
	e) rate of change of frequency when synchronizing	±5Hz	Р
	f) number of phases available	3 phases	Р
	g) neutral availability	With neutral	Р
	h) a.c. power distribution system compatibility:	TN, TN-S, TN-C, TN-C-S, TT (Three-phase, four-wire + PE).	Р
	i) total harmonic distortion (THD) of voltage (at linear and non-linear load as specified in annex E):	Р
	- in normal mode	THDu ≤ 1% with linear load, THDu ≤ 5.5% with non-linear load	Р
	- in stored energy mode	THDu ≤ 1% with linear load, THDu ≤ 5.5% with non-linear load	Р
	j) output voltage transient deviation	Vrms L-L or L-N <5% transient overshoot, 20ms recovery time	Р
	k) rated active and apparent output power and rated current	380/400/415Vac, 409.1A; 300kVA/270kW	Р
	I) overload capability	100–110% load 60 minutes, 110–125% load 10 minute, 125–150% load 1 minute, >150% load 200ms	Р
	m) current limit identification	409.1A	Р
	n) fault clearing capability	Through upstream breaker or fusing for BYPASS. Through fusing and breaker for Rectifier.	Р
	o) rated load power factor	1.0	Р
	p) permissible displacement power factor range of the load (cos. Φ)	0.8 lagging to 0.9 leading with de-rating.	Р
	q) voltage unbalance and phase angle displacement	< 3%, <1 deg	Р
	e) UPS efficiency at 25%, 50%, 75% and 100% reference test load	Max 95.0% @50% load	Р
5.3.3	Characteristics and conditions to be identified by the	purchaser	Р
	a) loads generating harmonic currents (max. levels permitted in IEC 61000-3-2, /-12/ -4)	Provided	Р
	b) asymmetric loads requiring circulation of a d.c. current	Provided	Р
	c) independent earth of the neutral required	Provided	Р
	d) load distribution facilities	Provided	Р
	e) requirements of all-pole isolation	Provided	Р
	f) requirements for coordination with characteristics of protective devices	Provided	Р

TRF No.: IEC62040_3C Page 14 of 71 Report No.: ENS2407180144P00101R Ver.1.0

	IEC 62040-3		
Clause	Requirement + Test	Result - Remark	Verdict
	g) future extension/expansion requirements	Provided	Р
	h) stand-by generator characteristics	Compatible with generator of rating typically >1,5x UPS KVA.	Р
	i) functional availability and degree of redundancy	Provided	Р
	j) output overvoltage protection	Provided	Р
5.3.4	Performance classification		Р
	UPS complying with this standard in accordance with the coding: AAA BB CCC		Р
	AAA = Input dependency characteristic	VFI	Р
	BB = Voltage waveform characteristic	SS	Р
	CCC = Dynamic output performance	111	Р
5.4	Stored energy specification		Р
5.4.1	General	See technical specification	Р
5.4.2	Battery	/ A	Р
5.4.2.1	Requirements for all batteries	See separate safety report.	Р
5.4.2.2	Characteristic to be declared by the manufacturer		Р
	a) life	5 or 10 years(depends)	Р
	b) quantity of blocks or cells and of paralleled strings	40 blocks, 240 cells per battery string.	Р
	c) nominal voltage of total battery	±240V	Р
	d) battery technology	Lead-acid	Р
	e) nominal capacity of total battery	Depend on battery size.	N/A
	f) stored energy time	Depend on battery size.	N/A
	g) restored energy time	Depend on battery size.	N/A
	h) ambient reference temperature	Battery (installed separately): - 15 to +50℃ without reducing battery life.	Р
	i) earth condition of d.c. link/isolation		Р
	j) r.m.s. ripple current during normal mode	Not limited	N/A
	k) nominal discharge current during stored energy mode		N/A
	I) d.c. fault current rating		N/A
	m) cable voltage drop recommendation	<1% of nominal DC voltage at rated battery current.	Р
	n) protection requirements	DC input breaker or fuse.	Р
	o) charging regime		N/A
	p) charging voltage and tolerance band		Р
	q) end of discharge voltage	1.60V/cell-1.75V/cell	Р

TRF No.: IEC62040_3C Page 15 of 71 Report No.: ENS2407180144P00101R Ver.1.0

	IEC 62040-3		
Clause	Requirement + Test	Result - Remark	Verdict
	r) charging current limit or range	(0.05-0.15) Capacity	Р
5.4.2.3	Characteristics and conditions to be identified by the	purchaser	Р
5.5	UPS switch specification	REC input switch, bypass input switch, maintenance switch and output switch and battery switch are optional parts.	Р
5.6	Communication circuits		Р
	Tues :		
6	UPS tests		
6.1	Summary		Р
6.1.1	Venue, instrumentation and load		Р
6.1.1.1	Test venue		Р
	A UPS shall generally be tested at the manufacturer's premises and in accordance with Table 3		Р
6.1.1.2	Test instrumentation		Р
6.1.1.3	Test load		Р
	Test load are performed as prescribed in the relevant test clause, with		Р
	- reference linear load		Р
	- reference non-linear load		Р
6.1.2	Routine test	Decided by manufacture and purchaser	Р
6.1.3	Site test		N/A
6.1.4	Witness test	Decided by manufacture and purchaser	Р
6.1.5	Type test		Р
6.1.6	Schedule of tests		N/A
	Tests shall be performed in accordance with Table 3		N/A
6.2	Routine test procedure		Р
6.2.2	Electrical		Р
6.2.2.1	Insulation and dielectric	See separate safety report.	Р
6.2.2.2	Cable and interconnection check	•	Р
	All a.c. and d.c. supply terminals are connected to the a.c. input supply, to the stored energy source and to the load		Р
	Any communication circuit is connected as required		Р
6.2.2.3	Light load and functional test		Р

TRF No.: IEC62040_3C Page 16 of 71 Report No.: ENS2407180144P00101R Ver.1.0

	IEC 62040-3		
Clause	Requirement + Test	Result - Remark	Verdict
	a) all control switches and other means to activate UPS operation		Р
	b) protective devices		Р
	c) auxiliary devices, such as contactors, fans, outlets, annunciators and communication devices		Р
	d) supervisory, monitoring and remote signalling devices		Р
	e) auto transfer to stored energy mode and back to normal mode by failing and subsequently restoring the a.c. input voltage		Р
	f) auto transfer to bypass or isolation of the inverter from a common a.c. output bus and back to normal mode by failing and subsequently restoring the inverter a.c. output voltage		P
	g) manual transfer to bypass or isolation of the inverter from a common a.c. output bus and back to normal mode by operating appropriate switches and/or controls		Р
6.2.2.4	No load		Р
6.2.2.5	Full load		Р
6.2.2.6	Synchronisation		Р
6.2.2.7	AC input failure		Р
6.2.2.8	AC input return	(see appended table)	Р
6.2.2.9	Transfer to bypass		Р
6.3	Site test procedure		N/A
	Site test shall preferably occur under conditions representing those of actual service and shall use the load available on site.		N/A
	The load shall not exceed the rated continuous load of the complete UPS as configured on side, or		N/A
	Test performed with reference test load as defined in 3.3.5		N/A
6.4	Type test procedure (electrical)		Р
6.4.1	Input – a.c. supply compatibility	(see appended table)	Р
6.4.1.1	Steady-state input voltage tolerance	(see appended table)	Р
6.4.1.2	Input frequency tolerance	(see appended table)	Р
6.4.1.3	Inrush current	(see appended table)	Р
6.4.1.4	Harmonic distortion of input current	(see appended table)	Р
6.4.1.5	Power factor	(see appended table)	Р
6.4.1.6	Efficiency	(see appended table)	Р
6.4.1.7	Backfeed protection	See separate report.	Р

TRF No.: IEC62040_3C Page 17 of 71 Report No.: ENS2407180144P00101R Ver.1.0

	IEC 62040-3		
Clause	Requirement + Test	Result - Remark	Verdict
6.4.1.8	Residual earth current	See separate report.	Р
6.4.1.9	Stand-by generator compatibility test		Р
6.4.1.10	Electromagnetic compatibility	See separate report.	Р
6.4.2	Output-Linear load	(see appended table)	Р
6.4.2.1	Normal mode- No load	(see appended table)	Р
6.4.2.2	Normal mode – Full load	(see appended table)	Р
6.4.2.3	Stored energy mode - No load	(see appended table)	Р
6.4.2.4	Stored energy mode - Full load	(see appended table)	Р
6.4.2.5	3-phase unbalance	(see appended table)	Р
6.4.2.6	DC component		Р
6.4.2.7	Load sharing test	Provided	Р
6.4.2.8	Output overvoltage test	(see appended table)	Р
6.4.2.9	Periodic output voltage variation test	(see appended table)	Р
6.4.2.10	Overload and fault clearing capability	/ A	Р
6.4.2.10.1	Overload - Normal mode	(see appended table)	Р
6.4.2.10.2	Overload - Stored energy mode	(see appended table)	Р
6.4.2.10.3	Fault clearing capability - Normal mode	(see appended table)	Р
6.4.2.10.4	Fault clearing capability - Stored energy mode	(see appended table)	Р
6.4.2.11	Dynamic performance		Р
6.4.2.11.1	Normal to stored energy mode	(see appended table)	Р
6.4.2.11.2	Stored energy to normal mode	(see appended table)	Р
6.4.2.11.3	Normal to bypass mode - Overload	(see appended table)	Р
6.4.2.11.4	Step load - Normal mode	(see appended table)	Р
6.4.2.11.5	Step load - Stored energy mode	(see appended table)	Р
6.4.2.11.6	Test method – linear load	(see appended table)	Р
6.4.2.12	Simulation of parallel redundant UPS fault	(see appended table)	Р
6.4.3	Output - Non-linear load		Р
	Tests performed with non-linear load as defined in annex E	(see appended table)	Р
6.4.3.1	Normal mode – Full load	(see appended table)	Р
6.4.3.2	Stored energy mode - Full load	(see appended table)	Р
6.4.3.3	Dynamic performance	-	Р
6.4.3.3.1	Normal to stored energy mode	(see appended table)	Р
6.4.3.3.2	Stored energy to normal mode	(see appended table)	Р
6.4.3.3.3	Load step – Normal mode		Р
	a) UPS ≤ 4.0 kVA rating	(see appended table)	N/A
	1	1	

TRF No.: IEC62040_3C Page 18 of 71 Report No.: ENS2407180144P00101R Ver.1.0

IEC 62040-3			
Clause	Requirement + Test	Result - Remark	Verdict
	b) UPS > 4.0kVA rating	(see appended table)	Р
6.4.3.3.4	Load step -stored energy mode	(see appended table)	Р
6.4.4	Stored and restored energy	·	Р
6.4.4.1	Stored energy time		N/A
6.4.4.2	Restored energy time (to 90% capacity)		N/A
6.4.4.3	Battery ripple current measurement		N/A
6.4.4.4	Restart test		Р
6.5	Type test procedure (environment)	•	Р
6.5.1	Environment and transportation test methods		Р
6.5.2	Transportation		Р
6.5.2.1	Shock test		N/A
	a) initial measurement		N/A
	b) mode of operation		N/A
	c) Tests	/ / A	N/A
	d) final requirements		N/A
	e) final measurements		N/A
6.5.2.2	Free fall test	(see appended table)	Р
	a) initial measurement		Р
	b) mode of operation		Р
	c) test		Р
	d) measurements during testing		Р
	e) final requirements		Р
	f) final measurements		Р
6.5.3	Storage	(see appended table)	Р
	a) initial measurement		Р
	b) mode of operation		Р
	c) tests		Р
	d) measurements during test		Р
	e) Final requirements		Р
	f) Final measurements		Р
6.5.4	Operation	(see appended table)	Р
	a) initial measurement		Р
	b) mode of operation		Р
	c) test		Р
	d) measurements during testing		Р
	e) final measurements		Р

TRF No.: IEC62040_3C Page 19 of 71 Report No.: ENS2407180144P00101R Ver.1.0

	IEC 62040-3		
Clause	Requirement + Test	Result - Remark	Verdict
	f) final requirements		Р
6.5.5	Acoustic noise		Р
	Measured when UPS operates at rated steady-state conditions:	linear load under the following	Р
	- normal mode	(see appended table)	Р
	- stored energy mode	(see appended table)	Р
6.6	UPS functional unit tests (where not tested as a com	plete UPS)	N/A
6.6.1	UPS rectifier test		N/A
6.6.2	UPS inverter tests		N/A
6.6.3	UPS switch tests		N/A
6.6.4	Stored energy / battery tests		N/A

TRF No.: IEC62040_3C Page 20 of 71 Report No.: ENS2407180144P00101R Ver.1.0

	IEC 62040-3		
Clause	Requirement + Test	Result - Remark	Verdict

6.4.1.1 TABLE: Steady-state input voltage tolerance

Ρ

Description of test conditions / test construction:

- 1. The steady-state input voltage tolerance test (see 6.4.1.1) shall be repeated with the input frequency adjusted to the limits specified by the manufacturer in conjunction with the input voltage variations
- 2. The r.m.s. voltage variation is 176Vac to 275Vac at 100% load.

Measured graph:

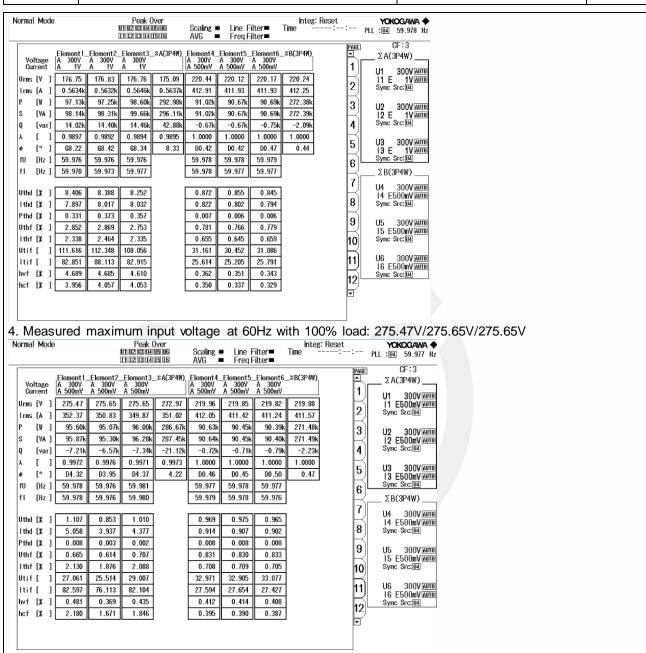
1. Measured minimum input voltage at 50Hz with 100% load: 176.65V/176.63V/176.75V

ı	lorma	Mode			Peak t					_ Integ:	Keset	YOKOGAWA ◆
					U1 U2 U3 U4 I1 I2 I3 I4		Scaling (AVG		-ilter ≖ -ilter ≖	Time -	:	PLL: 04 49.978 Hz
		ltage rrent	Element1 A 300V A 1V	Element2 A 300V A 1V	_Element3_ A 300V A 1V	_∑A(3P4W)	Element4 A 300V A 500mV	_Element5_ A 300V A 500mV	_Element6_ A 300V A 500mV	_∑B(3P4W)	PAGE	CF:3 ΣA(3P4W) U1 300ΨΑυτο
	Urns	[Y]	176 .65	176.63	176.75	175.82	220.10	219.97	219.99	220.02	K	I1 E 1V AUTO
	Irns	[A]	0.5578k	0.5581k	0.5591k	0.5583k	412.47	411.73	411.63	411.94	2	Sync Src:U4
	P	[W]	96.97k	97.02k	98.27k	292.27k	90.79k	90.57k	90.55k	271.91k	3	U2 300V AUTO
	S	[VA]	97.68k	97.78k	99.03k	294.49k	90.79k	90.57k	90.56k	271.91k	ĸ	12 E 1V AUTO
	Q	[var]	11.69k	12.20k	12.24k	36.13k	-0.55k	-0.54k	-0.61k	-1.70k	4	Sync Src:U4
	À	[]	0.9928	0.9922	0.9923	0.9924	1.0000	1.0000	1.0000	1.0000	K	U3 300V AUTO
	Φ	[°]	G6.87	G7.17	G7.10	7.05	D0.35	DO.34	D0.39	0.36	[5]	I3 E 1V AUTO
	fU	[Hz]	49.979	49.978	49.977		49.978	49.978	49.978		6	Sync Src:U4
	fI	[Hz]	49.979	49.974	49.989		49.978	49.976	49.978		R	ΣB(3P4₩)
											7	U4 300V AUTO
		[%]		7.058	6.965		0.815	0.807	0.793		K	14 E500mV AUTO
	1	[%]	6.840	7.046	7.136		0.781	0.763	0.755		8	Sync Src:U4
	ı	[%]	0.203	0.244	0.235		0.006	0.006	0.006		9	US 300V AUTO
	Uthf		2.037	2.053	1.967		0.621	0.620	0.623		R	15 E500mV AUTO
		[%]	1.939	1.976	2.023		0.527	0.530	0.532		10	Sync Src:U4
	Utif		78.250	79.321	75.740		24.063	23.944	24.098		H	U6 300V AUTO
	Itif		65.702	67.107	69.106		20.067	20.282	20.307		[11]	16 E500mV AUTO
	ı	[%]	3.955	3.977	3.919		0.348	0.341	0.331		12	Sync Src:U4
	hcf	[%]	3.429	3.579	3.597		0.338	0.326	0.320			

2. Measured maximum input voltage at 50Hz with 100% load: 276.38V/276.55V/276.49V.

Normal Mode	Peak Over		Integ: Reset	YOKOGAWA ◆
	U1 U2 U3 U4 U5 U6 11 12 13 14 15 16		Filter ≖ Time:- Filter ≖	FLL -U4 43.377 HZ
	ent2_Element3_≥A(3P4W). 00V A 300V 0mV A 500mV			PAGE CF: 3 Σ A(3P4W) 1 U1 300V Αυτο
· · · —	.55 276.49 275.13		219.68 219.76	2 I1 E500mV AUTO Sync Src:104
	.58 346.63 347.65	411.93 411.21	411.00 411.38	Z Sync orc.
	.02k 95.96k 286.29k		90.28k 271.21k	3 U2 300V AUTO
S [VA] 95.56k 95	.22k 96.16k 286.94k	90.57k 90.37k	90.29k 271.22k	12 E500mV AUTO
Q [var] -6.87k -6	.18k -6.23k -19.28k	-0.60k -0.60k	-0.67k -1.87k	4 Sync Src:U4
λ [] 0.9974 0.9	979 0.9979 0.9977	1.0000 1.0000	1.0000 1.0000	5 U3 300V AUTO
ø [°] D4.12 D3	.72 D3.71 3.86	D0.38 D0.38	D0.42 0.39	13 E500mV AUTO
fU [Hz] 49.977 49.	979 49.977	49.977 49.978	49.978	6 Sync Src:U4
fl [Hz] 49.976 49.	978 49.976	49.978 49.978	49.978	ΣB(3P4W)
				7] U4 300V AUTO
Uthd [%] 1.321 1.	041 1.228	0.924 0.910	0.910	14 E500mV AUTO
Ithd [%] 5.039 4.	080 4.557	0.878 0.859	0.855	8 Sync Src:U4
Pthd [%] 0.024 0.	016 0.011	0.008 0.007	0.007	9 U5 300VAUTO
Uthf [%] 0.472 0.	469 0.483	0.674 0.668	0.679	9 U5 300V AUTO 15 E500mV AUTO
Ithf [X] 1.366 1.	408 1.472	0.570 0.569	0.570	10 Sync Src:U4
Utif [] 18.628 18.	850 19.099	25.992 25.680	26.173	\mathbb{H}
Itif [] 46.686 47.	952 49.046	21.640 21.618	21.605	11) U6 300V AUTO 16 E500mV AUTO
hvf [%] 0.635 0.	503 0.591	0.403 0.392	0.391	Cuma Cracilla
hcf [%] 2.324 1.	841 2.000	0.387 0.373	0.373	12
				Ū

3. Measured minimum input voltage at 60Hz with 100% load: 176.75V/176.83V/176.76V.


TRF No.: IEC62040_3C Page 21 of 71 Report No.: ENS2407180144P00101R Ver.1.0

Ρ

Access to the World

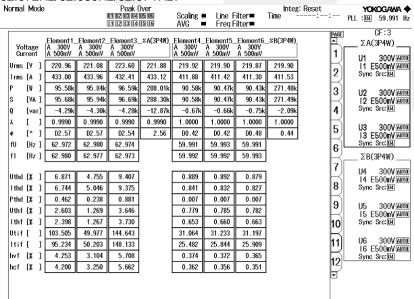
		IEC 62040-3		
Clause	Requirement + Test		Result - Remark	Verdict

6.4.1.2 TABLE: Input frequency tolerance

Description of test conditions / test construction:

- 1. Where the UPS output frequency is synchronized with the input frequency (47-63Hz), the range of synchronization shall be checked.
- 2. Where the total input frequency range exceeds the stated range of synchronization, the UPS output normally reverts to free running operation. The free running frequency shall be recorded for nonsynchronous conditions (47-63Hz).
- 3. The frequency variation is 47-63Hz.

TRF No.: IEC62040_3C Page 22 of 71 Report No.: ENS2407180144P00101R Ver.1.0


	IEC 62040-3		
Clause	Requirement + Test	Result - Remark	Verdict

Measured graph:

1. Measured minimum input frequency at rated input voltage with 100% load, Output frequency is 50Hz: 46.980Hz/46.977 Hz /46.979 Hz .

ormal Mode)		Peak (01 02 03 04 11 12 13 14	U5 U6	Scaling •		ilter = ilter =	Integ: Resi Time	et ::	YOKOGAWA ← PLL : [14] 49.991 H
Voltage Current	Element1_ A 300V A 500mV	Element2 A 300V A 500mV	_Element3_ A 300V A 500mV	_ΣA(3P4₩)	Element4_ A 300V A 500mV	_Element5_ A 300V A 500mV	_Element6 A 300V A 500mV	_ΣB(3P4₩)	PAGE	CF:3 ΣA(3P4W) U1 300V/Αυτί
Urms [V]	220.71	220.81	223.33	221.62	220.14	220.05	220.10	220.09		I1 E500mV AUT
Irms [A]	433.56	435.23	434.24	434.34	412.50	411.84	411.83	412.05	2	Sync Src: U4
P [W]	95.63k	96.04k	96.92k	288.59k	90.80k	90.62k	90.64k	272.07k	3	U2 300V AUT
S [VA]	95.69k	96.10k	96.98k	288.77k	90.81k	90.62k	90.64k	272.07k		12 E500mV AUT
Q [var]	-3.35k	-3.42k	-3.42k	-10.19k	-0.55k	-0.54k	-0.62k	-1.71k	4	Sync Src: U4
λ []	0.9994	0.9994	0.9994	0.9994	1.0000	1.0000	1.0000	1.0000		U3 300V AUT
φ [°]	D2.01	D2.04	D2.02	2.02	D0.35	D0.34	D0.39	0.36	5	13 E500mV AUT
fU [Hz]	46.980	46.977	46.979		49.991	49.994	49.993		6	Sync Src:U4
fl [Hz]	46.981	46.980	46.978		49.991	49.993	49.995		R.	ΣB(3P4W)
									7	U4 300V AUT
Uthd [%]		6.461	10.534		0.805	0.821	0.804			14 E500mV AU
Ithd [%]	6.678	6.558	10.551		0.775	0.780	0.764		8	Sync Src:U4
Pthd [%]	0.439	0.419	1.108		0.006	0.006	0.006		9	US 300V AUT
Uthf [%]	2.070	2.007	3.684		0.615	0.627	0.619			15 E500mV AU
Ithf [%]	2.007	2.015	3.792		0.522	0.532	0.524		10	Sync Src:U4
Utif[]	79.380	76.743	139.721		23.732	24.208	23.918		H	HO ODDUT
Itif []	75.678	76.081	144.004		19.887	20.277	19.969		11]	U6 300V AU 16 E500mV AU
hvf [%]		4.035	6.300		0.338	0.344	0.336		12	Sync Src:U4
hcf [%]	4.171	4.054	6.304		0.332	0.333	0.325			
									▼	

2. Measured maximum input frequency at rated input voltage with 100% load, Output frequency is 50Hz: 62.972Hz/62.980Hz/62.974Hz.

5.2.1.e	TABLE: - 3-phase input, voltage unbalance	Р
5.3.2.q		
6.4.2.5		

TRF No.: IEC62040_3C Page 23 of 71 Report No.: ENS2407180144P00101R Ver.1.0

		IEC 62040-3		
Clause	Requirement + Test		Result - Remark	Verdict

Description of test conditions / test construction:

- 1) Start the UPS in normal mode at nominal input voltage and frequency (220V/50Hz), apply balance full linear load and unbalance linear load.
- 2) Voltage unbalance ratio is defined as:

$$Y_{V} = \sqrt{\frac{U_{ab}^{2} + U_{ca}^{2} - 2 * U_{ab} * U_{ca} * \cos(\frac{\pi}{3} - \arccos\frac{U_{ab}^{2} + U_{ca}^{2} - U_{bc}^{2}}{2 * U_{ab} * U_{ca}} \times 100\%} \times 100\%$$

$$= \sqrt{\frac{U_{ab}^{2} + U_{ca}^{2} - 2 * U_{ab} * U_{ca} * \cos(\frac{\pi}{3} + \arccos\frac{U_{ab}^{2} + U_{ca}^{2} - U_{bc}^{2}}{2 * U_{ab} * U_{ca}})} \times 100\%$$

3) Angle deviation is defined as:

$$\Delta_{AB} = \frac{1}{\pi} \times \arccos \frac{U_{an}^2 + U_{bn}^2 - U_{ab}^2}{2 * U_{an} * U_{bn}} \times 180^\circ - 120^\circ$$

$$\Delta_{BC} = \frac{1}{\pi} \times \arccos \frac{{U_{bn}}^2 + {U_{cn}}^2 - {U_{bc}}^2}{2 * U_{bn} * U_{cn}} \times 180^\circ - 120^\circ$$

$$\Delta_{CA} = \frac{1}{\pi} \times \arccos \frac{U_{cn}^2 + U_{an}^2 - U_{ca}^2}{2 * U_{cn} * U_{an}} \times 180^\circ - 120^\circ$$

TRF No.: IEC62040_3C Page 24 of 71 Report No.: ENS2407180144P00101R Ver.1.0

		IEC 62040-3		
Clause	Requirement + Test		Result - Remark	Verdict

Measured graph:

1. Input voltage unbalance at Balance load.

Balance load	Va	Vb	Vc	Vab	Vbc	Vac	Yv(%)	< 2 degree		
Balarice load	Va	VD	VC	vab	VDC	Vac	<3%	△ ab	△ bc	△ca
Ph. a=b=c 100% Linear load	220.7	220.5 7	220.3 5	382.4 2	381.7 2	381.8 1	0.12	0.01	0.01	0.01
Normal Mode Peak Over Integ: Reset YOKOZAWA ◆ ### ### ############################										

	I1 I2 I3 I4			-iiter = -ilter =	ime	TLL -[04] 43.370 III
Voltage A 300V	Element2_Element3 300V A 300V A 50mV A 50mV	_∑A(3P4₩) Elemer A 300 A 500	nt4_Element5_ DV A 300V nV A 50mV	_Element6_≥ A 300V A 50mV	EB(3P4₩)	PAGE CF:3 Σ A(3P4W) 1 U1 300V Αυτο
Urms [V] 220.40 Irms [A] 0.4778k	220.71 220.59 0.4779k 0.4777k	220.56 220. 0.4778k 0.45		220.35 0.4545k	220.55 0.4537k	2 I1 E 50mV AUTO Sync Src:UT
P [W] 105.04k	105.29k 105.24k	315.57k 99.	92k 100.13k	100.14k	300.19k	3 Element 2 U2 300V
S [VA] 105.30k Q [var] -7.35k	105.47k 105.38k -6.04k -5.50k	-18.88k 1.	39k 1.12k	1.18k	300.21k 3.68k	4 12 E 50mV AUTO Sync Src:U1
λ [] 0.9976 φ [°] D4.00	0.9984 0.9986 D3.28 D2.99	0.9982 0.99 3.45 G0.		0.9999 G0.67	0.9999	5 U3 300V AUTO 13 F 50mV AUTO
fU [Hz] 49.982 f1 [Hz] 49.979	49.979 49.979 49.980 49.977	49.9 49.9		49.976 49.979		6 Sync Src: III ΣB(3P4W)
Delta Measure	Σ A(3P4W)		ΣB(3P4W)	10.010	ΣC(None)	7 Element 4
∆U1rms [V]	UrsA 382.24	UrsB	382.42			8 14 E 50mV AUTO Sync Src:U1 Element 5
	UstA 382.10 UtrA 381.72	⊣ ⊢	381 .72 381 .81			9 US 300V AUTO 15 E 50mV AUTO
⊿UΣrms[V] ⊿Irms [A]	UΣA 382.02 InA 36.29	⊣ ⊢	381.98 17.95			Sync Src:U1 Element 6
⊿P1 [W]] [11 U6 300V AUTO 16 E 50mV AUTO Sync Src: U1
⊿P2 [₩] ⊿P3 [₩]						12 sync src:ui
ΔPΣ [W]		[
						_


Update 20 (500msec)

2. Input voltage unbalance at Unbalance load, Ph. a=0, b=c=100% linear load.

Unbalance	Va	Vb	Vc	Vab	Vbc	Vac	Yv(%)	•	< 2 degree)
load	va	VD	VC	Vab	VDC	Vac	<3%	△ ab	△ bc	△ca
Ph. a=0,b=c=100 % linear load	221. 89	220.45	220.25	383.0 0	381.71	382.90	0.22	0.01	0.01	0.01

TRF No.: IEC62040_3C Page 25 of 71 Report No.: ENS2407180144P00101R Ver.1.0

<3%

△ ab

△ bc

△ ca

TRF No.: IEC62040_3C Page 26 of 71 Report No.: ENS2407180144P00101R Ver.1.0

load

			IEC 62	040-3					
Clause	Requirement +	Test			Result -	Remark		Vei	rdict
Ph. c=0,a=b=1 % linear lo	Peak Over Peak	220.38 221.56 Scaling # Line Filter AVG = Freq Filter	Integ: Reset	PAGE	382.03 382.03 382.03 382.03 382.03 382.03	0.12	0.01	0.01	0.0
6.2.2.8 6.4.1.3		AC input return						P	

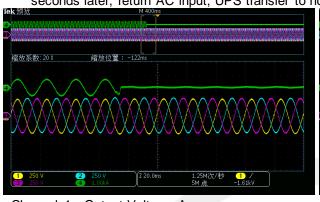
TRF No.: IEC62040_3C Page 27 of 71 Report No.: ENS2407180144P00101R Ver.1.0

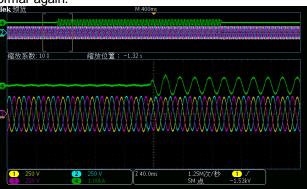
	IEC 620)40-3		
Clause	Requirement + Test		Result - Remark	Verdict

Description of test conditions / test construction:

- 1. AC input return
- 1) UPS run in normal mode, applying 100% linear load. Then cut off input, UPS transfer to battery. A few seconds later, return AC input, UPS transfer to normal again.
- 2) UPS run in normal mode, applying 100% linear load. Then cut off input, UPS transfer to battery. A few seconds later, return AC input with improper phase rotation, UPS can't transfer to normal and alarm "Rectifier Phase.
- 3) Then cut off input, and return AC input with proper phase rotation, UPS transfer to normal again.
- 2. Inrush current
- 1) Input &bypass supply at 176V/220V/280V 50Hz and battery off. analysis the inrush input current for the following cases:
- 2) When Vbus didn't drop, turn on common line &bypass and battery at the moment that the input voltage is 0V first and Vmax, record the inrush current, and then turn on the system, record the inrush current again.
- 3) Test results: inrush current ≤120% of rated current for ≤2 cycles.

TRF No.: IEC62040_3C Page 28 of 71 Report No.: ENS2407180144P00101R Ver.1.0



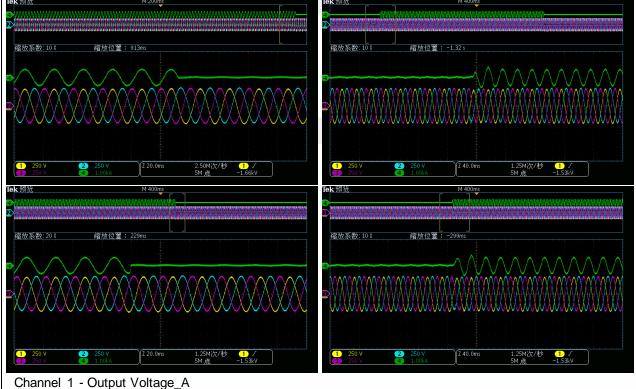

	IEC 62040-3		
Clause	Requirement + Test	Result - Remark	Verdict

Measured graph:

1 AC input return

UPS run in normal mode, applying 100% linear load. Then cut off input, UPS transfer to battery. A few seconds later, return AC input, UPS transfer to normal again.

Channel 1 - Output Voltage_A


Channel 2 - Output Voltage_B

Channel 3 - Output Voltage_C

Channel 4 - Intput Current_A

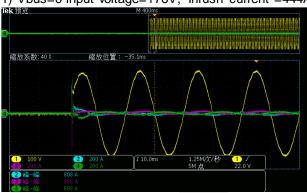
2) UPS run in normal mode, applying 100% linear load. Then cut off input, UPS transfer to battery. A few seconds later, return AC input with improper phase rotation, UPS can't transfer to normal and alarm "Inverter abnormal".

Then cut off input, and return AC input with proper phase rotation, UPS transfer to normal again.

Channel 2 - Output Voltage_B

Channel 3 - Output Voltage_C

TRF No.: IEC62040_3C Page 29 of 71 Report No.: ENS2407180144P00101R Ver.1.0

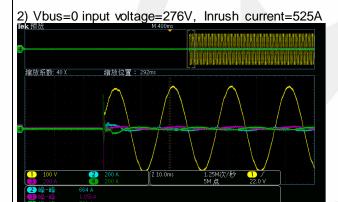


	IEC 62040-3		
Clause	Requirement + Test	Result - Remark	Verdict

Channel 4 - Intput Current_A

2. Inrush current < 2.5X

1) Vbus=0 input voltage=176V, Inrush current =444A



Channel 1 - Input Voltage_A

Channel 2 - Input Current_A

Channel 3 - Input Current_B

Channel 4 - Input Current_C

Channel 1 - Input Voltage_A

Channel 2 - Input Current_A

Channel 3 - Input Current_B

Channel 4 - Input Current_C

6.4.1.4 TABLE: -Harmonic distortion of input current

Ρ

Description of test conditions / test construction:

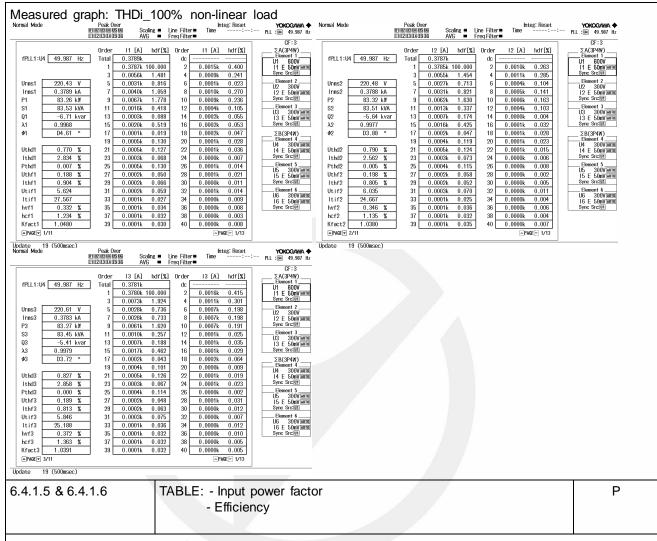
- 1) The harmonic distortion of the input current is tested at reference test load.
- 2) Test result THDi <3% with full linear load.
- 3) Test result THDi < 5% with full non-linear load

Load	Harmonic	Phase 1	Phase 2	Phase 3	
(%)	No.	(%)	(%)	(%)	

TRF No.: IEC62040_3C Page 30 of 71 Report No.: ENS2407180144P00101R Ver.1.0

			IEC 6204	0-3				
Requirement + Test					Result - Remark			Verdi
3	3	0	.846		1.057		0.838	
5	5	0	.571		0.835		0.759	
7	7	0	.287		0.346		0.306	
100% 9		0	.315	0.601		0.574		
, ,			I					
			Distortion at phase 2			to the spe	ecification	
to THD below	2.14	11%	2.171%	1.	1.777% <		3%	
$00 \bullet \sqrt{\left(10^{\frac{3^{\circ}}{20}}\right)^2 + \left(\frac{3^{\circ}}{20}\right)^2}$	$\left(10^{\frac{5^{\circ}}{20}}\right)^2$ -	$+\left(10^{\frac{7^{\circ}}{20}}\right)$	$\frac{1}{10^{\frac{9^{\circ}}{20}}} + \left(10^{\frac{9^{\circ}}{20}}\right)^{2} =$					
1	to THD below	3 5 7 9 Distortiat phase to THD below 2.14	3 0 5 0 7 0 9 0 Distortion at phase 1	3 0.846 5 0.571 7 0.287 9 0.315 Distortion at phase 1 Distortion at phase 2 to THD below 2.141% 2.171%	3 0.846 5 0.571 7 0.287 9 0.315 Distortion at phase 1 Distortion at phase 2 at phase	3 0.846 1.057 5 0.571 0.835 7 0.287 0.346 9 0.315 0.601 Distortion at phase 1 Distortion at phase 2 at phase 3 to THD below 2.141% 2.171% 1.777%	3 0.846 1.057 5 0.571 0.835 7 0.287 0.346 9 0.315 0.601 Distortion at phase 1 Distortion at phase 2 to THD below 2.141% 2.171% 1.777% <	3 0.846 1.057 0.838

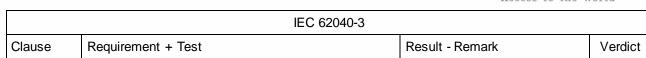
TRF No.: IEC62040_3C Page 31 of 71 Report No.: ENS2407180144P00101R Ver.1.0

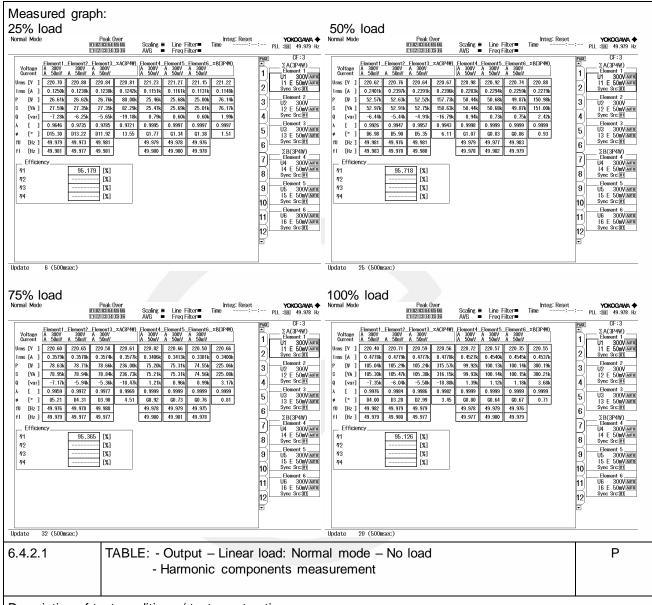


		IEC 62040-3	3		
Clause Requi	irement + Test		Result - Rer	mark	Verdict
Measured graph: THDi_100% Inear Pook On Inear Inear	Coad Coad	12 E. SUNMARIEN 17 ms 2 17 m	Peak Over ####################################	Line Filter ■ Time Integ: Reset PtL: 38	OKOCAMA ◆ ② 49.978 hz OF:3 (Q2-4W)
3) Test result Load (%)	THDi < 5% with full no	on-linear load Phase 1 (%)	Phase 2 (%)	Phase 3 (%)	
100%	3	1.481	1.454	1.924	
100%	5	0.816	0.713	0.736	
100%	7	1.059	0.821	0.733	
100%	9	1.778	1.630	1.620	
THDi see formula to	Distortion at phase 1	Distortion at phase 2	Distortion at phase 3	Expected value of the specification of the manufacture	on
THD below	$\frac{2.834\%}{0^{\frac{3^{\circ}}{20}}\right)^{2} + \left(10^{\frac{5^{\circ}}{20}}\right)^{2} + \left(10^{\frac{7^{\circ}}{20}}\right)^{2}$	$\frac{2.562\%}{2 + \left(10^{\frac{9^{\circ}}{20}}\right)^{2}}$	2.858%	< 5%	

TRF No.: IEC62040_3C Page 32 of 71 Report No.: ENS2407180144P00101R Ver.1.0

		IEC 62040-3		
Clause	Requirement + Test		Result - Remark	Verdict


Description of test conditions / test construction:


1) UPS run in normal mode, charge off. The UPS efficiency shall be measured at 25 %, 50 %, 75 % and 100 % reference load. Input power factor = 1.0

Load (%)	Efficiency (%)	Input power (kW)	Output power (kW)	Expected value due to the specification of the manufacturer	Verdict
25	95.179	80.00	76.14	95.0%	Р
50	95.718	157.73	150.98	95.0%	Р
75	95.365	236.00	225.06	95.0%	Р
100	95.126	315.57	300.19	95.0%	Р

TRF No.: IEC62040_3C Page 33 of 71 Report No.: ENS2407180144P00101R Ver.1.0

Description of test conditions / test construction:

1) With the UPS operating in normal mode of operation at no load and nominal input voltage and frequency, measure the r.m.s. output voltage and its fundamental and harmonic components.

Load (%)	Harmonic No.	Phase 1 (%)	Phase 2 (%)	Phase 3 (%)	-
0	3	0.280	0.286	0.290	
0	5	0.295	0.304	0.301	-
0	7	0.199	0.201	0.201	
0	9	0.133	0.140	0.138	

TRF No.: IEC62040_3C Page 34 of 71 Report No.: ENS2407180144P00101R Ver.1.0

			IEC 6204	J-3			
Clause	Re	quirement + Test			Result - Ren	nark	Verdic
ΓHD		Distortion at phase 1	Distortion at phase 2	Distort at phas		Expected value due to the specification of the manufacturer	
see formula THD below		0.584%	0.590%	().588%	< 1%	
<i>THD</i> = 1	100∙.	$\sqrt{\left(10^{\frac{3^{\circ}}{20}}\right)^{2} + \left(10^{\frac{5^{\circ}}{20}}\right)^{2} + }$	$ \frac{1}{\left(10^{\frac{7^{\circ}}{20}}\right)^{2} + \left(10^{\frac{9^{\circ}}{20}}\right)^{2}} = \frac{1}{1} $				
Measured	graph	n: THD u					
fPLL1:U4 49.978 Urms94 221.16 1rms94 0.000 P4 0.000 Q4 0.000 A4 Error Greror Uthd4 0.504 1thd4 98.010 Uthf4 0.504 1thf4 11.977 1tif4 19.977 1tif4 19.977 1tif4 49.97 1tif4 49.97 1tif4 49.97 1tif4 19.977 1tif4 79.97 1tif4 19.977 1tif4 79.97 1tif4 19.97 1tif4 19.97 1tif4 19.97 1tif4 19.97	Hz		1 200V/ame 1 2 5 5 5 5 5 5 5 5 5	55 0.000 F 0.001 kl 0.000 kl 0.000 kl Error Error 65 0.590 2 65 99.267 2 65 0.486 2 66 94.688 2 67 19.70 67 19.70 68 2.67 2 68 2 68 2.67 2 68 2 68 2.67 2 68 2	Ital	dr [%] 0 r der US [V] hdr [%] 0c	CF:3 Z A(3P4W) U1 300V ARRIVED SOME ARRIVE
PLL1:U4 48.978 Urms6 221.26 Irms6 0.000 P6 0.000 S6 0.000 A6 Error 46 Error Uthd6 0.588 Ithd6 97.592 Pthd6 0.487 Uthf6 10.487 Uthf6 10.487 Uthf6 19.317 Itif6 0.248 Kfact6 331.66 EPAGE™ 6/11	V A kill kvar kvar % % % % % % % % % % % % % % % % % % %	Total 221.22 30.00 30.	0.042 0.007 11 E SUNY WITH 1 S				
		TABLE O	- Linear load: Normal				P

voltage and its fundamental and harmonic components.

1) UPS runs in normal mode, applying 100 % reference test load to the UPS output, then measure output

TRF No.: IEC62040_3C Page 35 of 71 Report No.: ENS2407180144P00101R Ver.1.0

			IEC 62	040-3		
Clause	Rec	quirement + Test		Result - Remark		Verdict
Load (%)		Harmonic No.	Phase 1 (%)	Phase 2 (%)	Phase 3 (%)	
100		3	0.702	0.734	0.722	
100		5	0.461	0.453	0.470	
100		7	0.349	0.346	0.357	
100		9	0.288	0.280	0.295	
THD		Distortion at phase 1	Distortion at phase 2	Distortion at phase 3	Expected value due to the specification of the manufacturer	
see formula THD below		1.119%	1.062%	1.138%	< 2%	
### Urms4	V kA kW kW	all 220.73	Chement 1 1 1 1 1 1 1 1 1	**************************************	Order U5 W bdf W	2 A(3*4W) Lebonout 1 U1 300V/9019 U1 300V/9019 Sync Src(31) Lebonout 2 U2 Elomont 2 U3 500W/9019 Sync Src(31) Lebonout 3 U3 300V/9019 U3 300V/9019 U3 300V/9019 U4 300V/9019 U4 300V/9019 U4 300V/9019 U4 300V/9019 U4 500W/9019 Sync Src(31) Lebonout 4 U4 500W/9019 Sync Src(31) Lebonout 4 U5 500W/9019 Sync Src(31) Lebonout 5 U5 300W/9019 Sync Src(31) Lebonout 7 U6 Elomont 5 U7 15 E 500W/9019 Sync Src(31) Lebonout 7 U6 16 E 500W/9019 Sync Src(31)
Kfact4 1.0140 PAGE 4/11 Update 20 (500msection Mode)	3 Peal	k Duor	WASE 1/13 Upda	PAGE ▼ 5/11	0.013 40 0.03 0.012 PAGE 1/13	
fPLL1:U4 49.978 Urms6 220.35 Irms6 0.4545 P6 100.14 S8 100.15 G8 1.18 λ6 0.9999 Φ6 60.67 Uthd6 1.138 Ithd6 0.013 Uthd6 0.013 Uthf6 0.666 Ithf6 0.731 Uthf6 0.4865 Ithf6 0.731 Chif6 24.695 Ithf6 0.517 Nrf6 0.517 Nrf6 0.517 Nrf6 0.517	Total Tota	No. FreqFilter No. N	PLI : IBB 49.978 Hz CF: 3			

TRF No.: IEC62040_3C Page 36 of 71 Report No.: ENS2407180144P00101R Ver.1.0

IEC 62040-3					
Clause	Requirement + Test		Result - Remark	Verdict	

6.4.2.3	TABLE: - Output – Linear load: Stored energy mode – No load - Harmonic components measurement	Р

Description of test conditions / test construction:

1). With the UPS operating in battery mode of operation at no load, measure the r.m.s. output voltage and its fundamental and harmonic components.

Load (%)	Harmonic No.	Phase 1 (%)	Phase 2 (%)	Phase 3 (%)	
100	3	0.280	0.286	0.290	
100	5	0.295	0.304	0.301	
100	7	0.199	0.201	0.201	
100	9	0.133	0.140	0.138	

THD	Distortion at phase 1	Distortion at phase 2	Distortion at phase 3	Expected value due to the specification of the manufacturer	
see formula to THD below	0.584%	0.590%	0.588%	< 1%	

$$THD = 100 \bullet \sqrt{\left(10^{\frac{3^{\circ}}{20}}\right)^{2} + \left(10^{\frac{5^{\circ}}{20}}\right)^{2} + \left(10^{\frac{7^{\circ}}{20}}\right)^{2} + \left(10^{\frac{9^{\circ}}{20}}\right)^{2}} =$$

TRF No.: IEC62040_3C Page 37 of 71 Report No.: ENS2407180144P00101R Ver.1.0

hdf[%]

CF:3 ΣA(3P4W)_

			0.00 /CDMM/ARRONDOWNER SHIPL CONTYXED TABLE AND 1980	7. P.
		IEC 62040-3		
Clause	Requirement + Test		Result - Remark	Verdict

fPLL1:U4 49.978 Hz

Urms5 Irms5

Time Integ: Reset YOKOGAWA ◆
PLL: 114 49.978 Hz

U4 [V] hdf[%]

0.024

CF:3 _ΣA(3P4W)_

U1 300V AUTO I1 E 50mV AUTO Sync Src:U4

Scaling # Line Filter■ AVG ■ Freq Filter■

U4 [V] hdf[%] 221.15 221.15 99.998

Uthd4 0.584 % Ithd4 98.010 % Pthd4 0.112 % Uthr4 0.504 % Ithf4 114.246 % Ithf4 119.977 Itif40 F hvr4 0.238 % hcr4 87.48 ■PAGET 4/11 Normal Mode	15	4 0.01 0.003 3 E 50 50 1	AS Error 11 Whome	3	Sync Sre@
### PLL1:U4 49.978 Hz Urms6 221.20 V Irms6 0.000 A P6 -0.000 kI S6 0.000 kVA Q6 0.000 kVA Q6 0.000 kVA Error ###############################	1 221.21 99.998 3 0.64 0.290 5 0.67 0.301 7 0.44 0.201 9 0.30 0.138	CF: CF:	V) CANTER ON A CONTROL ON A CON		
5.4.2.4		t – Linear load: Sto ic components mea	red energy mode – Fasurement	ull load	Р
Description of		test construction: test construction:		e UPS output, then meas	sure output
Description of I) UPS runs i		nd harmonic compor	nents.		
Description of I) UPS runs i			Phase 2 (%)	Phase 3 (%)	
Description of) UPS runs in oltage and it oad %)	s fundamental an	Phase 1	Phase 2		
Description of) UPS runs is oltage and it oad %)	s fundamental an	Phase 1 (%)	Phase 2 (%)	(%)	
Description of I) UPS runs in the contraction of t	s fundamental an Harmonic No.	Phase 1 (%) 0.626	Phase 2 (%) 0.639	0.632	
Description of Descri	Harmonic No. 3	Phase 1 (%) 0.626 0.487	Phase 2 (%) 0.639 0.483	(%) 0.632 0.477	

TRF No.: IEC62040_3C Page 38 of 71 Report No.: ENS2407180144P00101R Ver.1.0

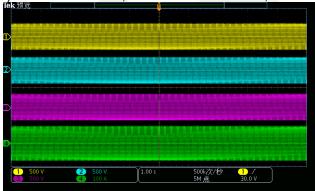
			IEC 62040.2		Access to the	World
	T_		IEC 62040-3	1		T.,
Clause	Requ	irement + Test		Result -	Remark	Verdict
see formula THD below	ı to	1.093%	1.094%	1.088%	< 2%	
<i>THD</i> =1	00•√	$\left(10^{\frac{3^{\circ}}{20}}\right)^{2} + \left(10^{\frac{5^{\circ}}{20}}\right)^{2} + $	$\left(0^{\frac{7^{\circ}}{20}}\right)^{2} + \left(10^{\frac{9^{\circ}}{20}}\right)^{2} =$			
Measured Momal Mode Momal Mode Urass4 220.65 Irass4 0.4517 P4 99.65 S4 99.66 0.41 1.23 3.44 0.9939 0.45 0.4517 P4 0.658 1.146 0.112 Uthr4 0.658 1.147 0.658 1.147 0.518 1.147 0.518 1.147 0.518 1.147 0.483 hcr4 0.518 Kfact4 0.518 Kfact4 0.518 Kfact4 0.1718 Mode Mode	Peak O. Fried Control of Control	Scaling May Color Col	The content The content	Order U5 [V]	Integ: Reset Time Time	YCKOQAWA ◆ 1. 188 49.991 Hz CF: 3
Uthd6 1.088 1.088 1.008	* 23 * 25 * 27 * 29 31 33 * 35 * 37 39	0.34 0.153 22 0.02 0.00 0.33 0.152 24 0.01 0.00 0.27 0.124 26 0.01 0.00 0.26 0.119 28 0.01 0.00 0.18 0.081 32 0.02 0.00 0.15 0.066 34 0.01 0.00 0.11 0.061 34 0.01 0.00 0.07 0.031 38 0.01 0.00 0.07 0.031 38 0.01 0.00 0.07 0.032 40 0.02 0.01	6 Sync Srculu 3 Element 5 U5 300V Mario 6 15 E Shart/ Mario 9 Element 6 U6 300V Mario 6 16 E Shart/ Mario 5 Sync Src(@) 6 Sync Src(@) 6 Sync Src(@)			

TRF No.: IEC62040_3C Page 39 of 71 Report No.: ENS2407180144P00101R Ver.1.0

		IEC 62040-3		
Clause	Requirement + Test		Result - Remark	Verdict

6.4.2.10.1	TABLE: Overload capability test - Normal mode	Р

Description of test conditions / test construction:


- 1) UPS in normal mode, apply below loads respectively to the output, check UPS performance and alarms.
- 2) Measure the overload time duration, check UPS transfer to bypass and transfer back to normal mode automatically if removing overload.

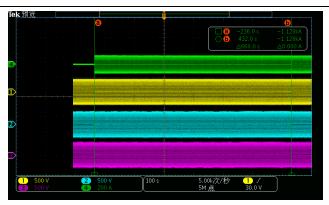
Condition	Specs
Condition	30℃ ambient, 1000m, nominal Uin
	105-110% load, 60 minutes
Overload	110-125% load, 10 minutes
Overload	126-150% load, 1 minute
	>150% load, 200 ms

Load (%)	Input voltage (V)	Input power (kVA) (kW)	Output voltage (V)	Output power (kVA) (kW)	Specified time interval (s)	Verdict
110				4	60 minutes	Р
125		-	/		10 minutes	Р
150			y		1 minute	Р
>150			/		200 ms	Р

Measured graph:

1) 110% linear load, overload time>60mins;

Channel 1 - Output Voltage_A Channel 2 - Output Voltage_B Channel 3 - Output Voltage_C Channel 4 - Output Current_A


2) 125% linear load, overload time>10mins;

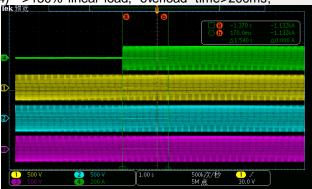
TRF No.: IEC62040_3C Page 40 of 71 Report No.: ENS2407180144P00101R Ver.1.0

IEC 62040-3

Clause Requirement + Test Result - Remark Verdict

Channel 1 - Output Voltage_A Channel 2 - Output Voltage_B

Channel 3 - Output Voltage_C Channel 4 - Output Current_A


3) 150% linear load, overload time>60s;

Channel 1 - Output Voltage_A Channel 2 - Output Voltage_B

Channel 3 - Output Voltage_C Channel 4 - Output Current_A

4) >150% linear load, overload time>200ms;

Channel 1 - Output Voltage_A Channel 2 - Output Voltage_B

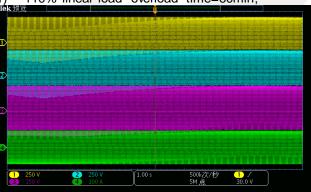
Channel 3 - Output Voltage_C Channel 4 - Output Current_A

TRF No.: IEC62040_3C Page 41 of 71 Report No.: ENS2407180144P00101R Ver.1.0

	IEC 62040-3		
Clause	Requirement + Test	Result - Remark	Verdict

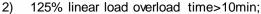
6.4.2.10.2 TABLE: Overload capability test – Stored energy mode P

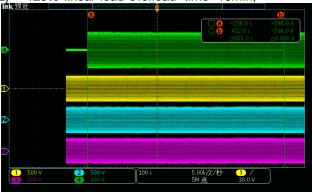
Description of test conditions / test construction:


- 1) UPS in battery mode, apply below loads respectively to the output, check UPS performance and alarms.
- 2) Measure the overload time duration, check UPS transfer to bypass and transfer back to battery mode automatically if removing overload.

Condition	Specs		
Condition	30°C ambient, 1000m, nom nal Uin		
	105-110% load, 60 minutes		
Overload	110-125% load, 10 minutes		
Overload	126-150% load, 1 minute		
	>150% load, 200 ms		

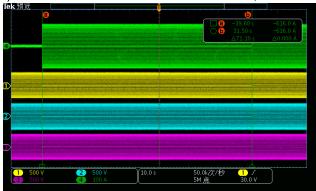
	Load (%)	Input voltage (V)	Input power (kVA) (kW)	Output voltage (V)	Output power (kVA) (kW)	Specified time interval (s)	Verdict
	110					60 minutes	Р
	125					10 minutes	Р
	150				-	1 minute	Р
	>150					200 ms	Р


Measured graph:

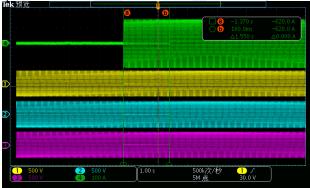


Channel 1 - Output Voltage_A Channel 2 - Output Voltage_B Channel 3 - Output Voltage_C

Channel 4 - Output Current_A


TRF No.: IEC62040_3C Page 42 of 71 Report No.: ENS2407180144P00101R Ver.1.0

	IEC 62040-3		
Clause	Requirement + Test	Result - Remark	Verdict


Channel 1 - Output Voltage_A
Channel 2 - Output Voltage_B
Channel 4 - Output Current_A

3) <150% linear load overload time>60s;

Channel 1 - Output Voltage_A
Channel 2 - Output Voltage_B
Channel 3 - Output Voltage_C
Channel 4 - Output Current_A

4) >150% linear load overload time>200ms;

Channel 1 - Output Voltage_A

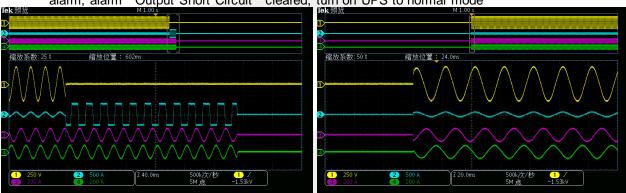
Channel 3 - Output Voltage_C

Channel 2 - Output Voltage_B

Channel 4 - Output Current_A

TRF No.: IEC62040_3C Page 43 of 71 Report No.: ENS2407180144P00101R Ver.1.0

IEC 62040-3				
Clause	Requirement + Test	Result - Remark	Verdict	
6.4.2.10.3	TABLE: - Fault clearing capability - Normal mode		Р	


- Short circuit test

Description of test conditions / test construction:

- 1) UPS operating in normal mode, Without Bypass input, applying 50% linear load. Input and output both are 220V/50Hz.
- Then make output shorted, check UPS response. UPS should shut down and alarm "Output Short 2) Circuit"
- Then remove the shorted circuit; Reset alarms, "Output Short Circuit " will be cleared.
- 4) Turn UPS on, UPS run in normal mode again.

Measured graph:

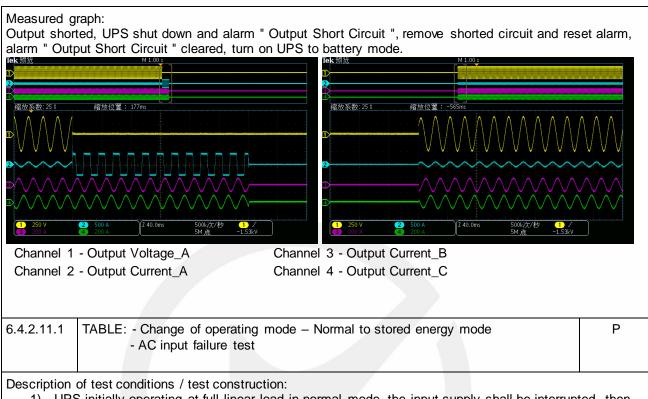
1) Output shorted, UPS shut down and alarm " Output Short Circuit ", remove shorted circuit and reset alarm, alarm " Output Short Circuit " cleared, turn on UPS to normal mode

Channel 1 - Output Voltage_A Channel 2 -Output Current_A

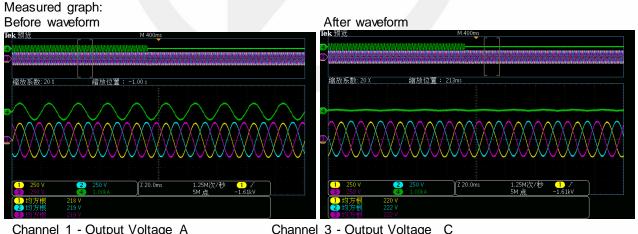
Channel 3 - Output Current_B Channel 4 -Output Current_C

6.4.2.10.4 TABLE: - Fault clearing capability - Stored energy mode - Short circuit test

Ρ


Description of test conditions / test construction:

- 1) UPS operating in battery mode, Without Bypass input, applying 50% linear load. Output is 220V/50Hz.
- 2) Then make output shorted, check UPS response. UPS should shut down and alarm "Output Short Circuit ".
- Then remove the shorted circuit; Reset alarms, Output Short Circuit "will be cleared.
- 4) Turn UPS on, UPS run in battery mode again.


TRF No.: IEC62040_3C Page 44 of 71 Report No.: ENS2407180144P00101R Ver.1.0

IEC 62040-3					
Clause	Requirement + Test	Result - Remark	Verdict		

- 1) UPS initially operating at full linear load in normal mode, the input supply shall be interrupted, then UPS transfers to battery mode.
- 2) Check the system when the utility failure normal operation. Measure the transient output voltage deviation.

Channel 1 - Output Voltage_A	Channel 3 - Output Voltage _C
Channel 2 - Output Voltage_B	Channel 4 - Input Current _A

Power Type	Response procedure	Before (V)			After (V)			Deviation < 5%		
		Α	В	С	А	В	С	Deviati on	Deviat ion	Deviati on

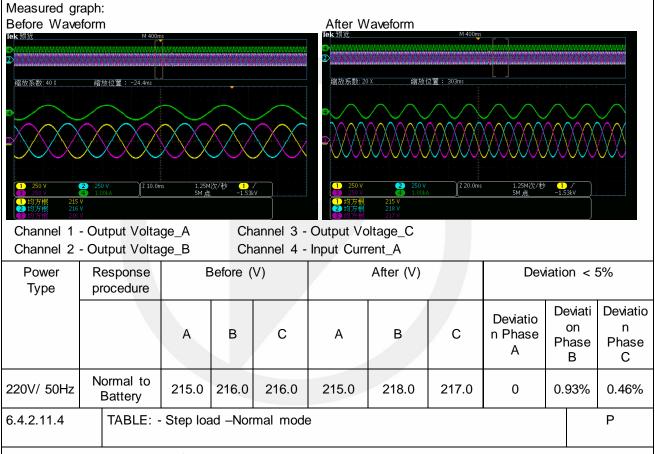
EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

TRF No.: IEC62040_3C Page 45 of 71 Report No.: ENS2407180144P00101R Ver.1.0

Access to th	ne World	
--------------	----------	--

	IEC 62040-3										
Clause Requirement + Test Result - Re						Remark		,	Verdict		
								Phase A	Phase B	Phase C	
220V/ 50Hz	Normal to Battery	218.0	219.0	219.0	220.0	222.0	222.0	0.92%	1.37%	1.37%	

TRF No.: IEC62040_3C Page 46 of 71 Report No.: ENS2407180144P00101R Ver.1.0

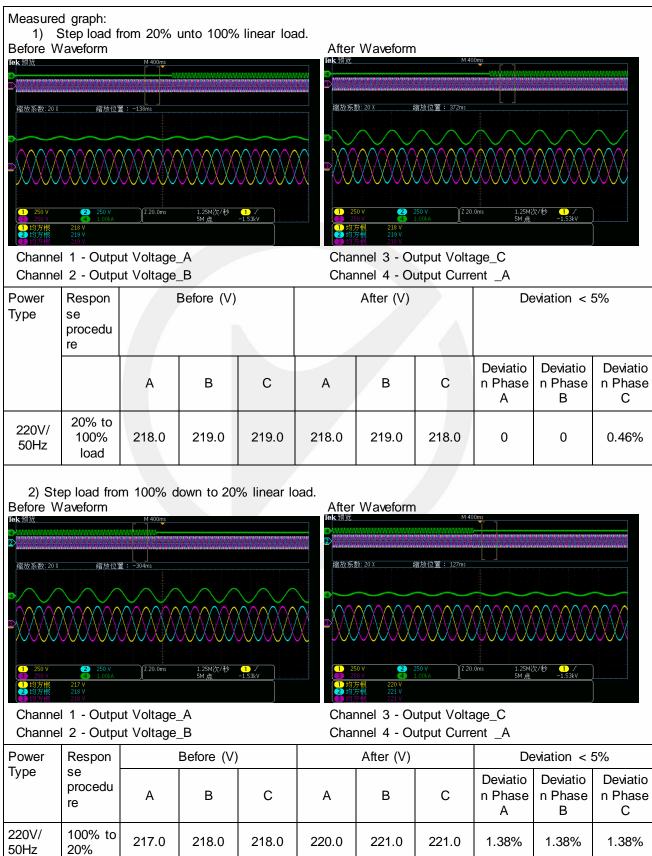


		IEC 62040-3		
С	lause	Requirement + Test	Result - Remark	Verdict

6.4.2.11.3	TABLE: - Change of operating mode — Normal to bypass mode	Р
	- Overload test	

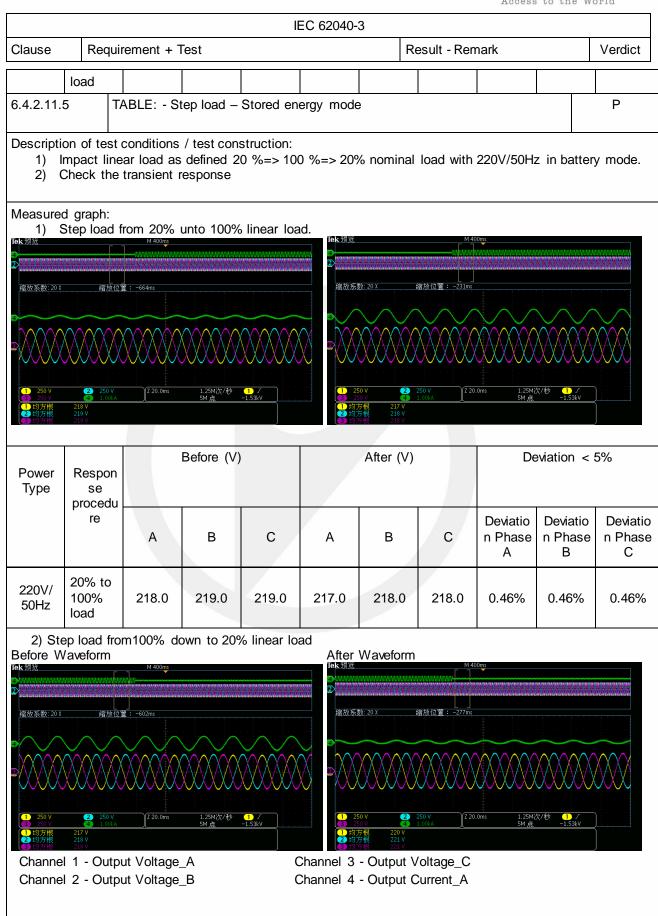
Description of test conditions / test construction:

- 1) UPS has a bypass mode of operation which is automatic in operation under conditions of output overload.
- 2) The input and output voltage waveforms shall be observed during transitions normal to bypass mode.


Description of test conditions / test construction:

- 1) Impact linear load as defined 20 %=> 100 %=> 20% nominal load with 220V/50Hz in normal mode.
- 2) Check the transient response

TRF No.: IEC62040_3C Page 47 of 71 Report No.: ENS2407180144P00101R Ver.1.0



IEC 62040-3				
Clause	Requirement + Test	Result - Remark	Verdict	

TRF No.: IEC62040 3C Page 48 of 71 Report No.: ENS2407180144P00101R Ver.1.0

TRF No.: IEC62040 3C Page 49 of 71 Report No.: ENS2407180144P00101R Ver.1.0

	IEC 62040-3		
Clause	Requirement + Test	Result - Remark	Verdict

Power	Respon		Before (V)			After (V)			eviation < 5%		
Туре	se procedu re	А	В	С	А	В	С	Deviatio n Phase A	Devia n Pha B		Deviatio n Phase C
220V/ 50Hz	100% to 20% load	217	218	218	220	221	221	1.38%	1.38	%	1.38%
6.4.3.1	TABLE: Output – Non-linear Ic - Harmonic components meas				ode – Full	load			Р		

Description of test conditions / test construction:

UPS runs in normal mode, applying 100 % non-linear load to the UPS output, then measure output voltage and its fundamental and harmonic components.

Load (%)	Harmonic No.	Phase 1 (%)	Phase 2 (%)	Phase 2 (%)	
100	3	1.017	0.996	1.005	
100	5	1.440	1.472	1.469	
100	7	0.168	0.175	0.173	
100	9	0.215	0.241	0.214	

THD	Distortion at phase 1	Distortion at phase 2	Distortion at phase 3	Expected value due to the specification of the manufacturer	Į
see formula to THD below	1.884%	1.900%	1.892%	< 5.5%	-

$$THD = 100 \bullet \sqrt{\left(10^{\frac{3^{\circ}}{20}}\right)^{2} + \left(10^{\frac{5^{\circ}}{20}}\right)^{2} + \left(10^{\frac{7^{\circ}}{20}}\right)^{2} + \left(10^{\frac{9^{\circ}}{20}}\right)^{2}} =$$

TRF No.: IEC62040_3C Page 50 of 71 Report No.: ENS2407180144P00101R Ver.1.0

		IEC 62040-3		
Clause	Requirement + Test		Result - Remark	Verdict

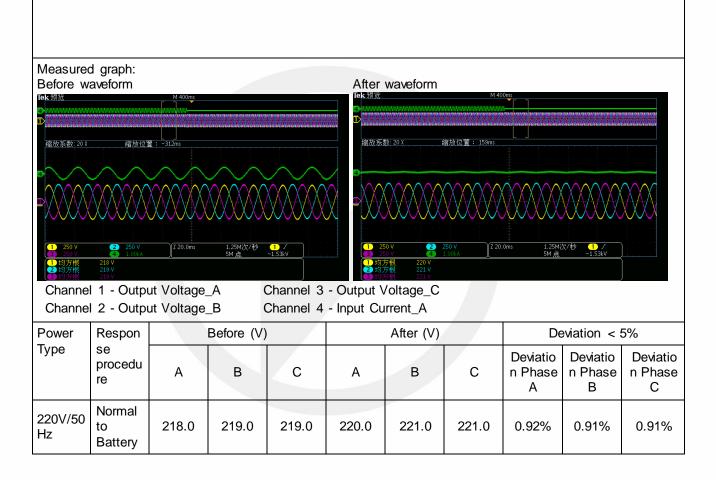
Measured graph:
Normal Mode graph:

FPLL1:UA 49.979 Hz	Order UH [V] Indr[K] Order UH [V] Total 229.70	Section Sec	M	0 0 0 0 0 0 0 0 0 0	2 A(3*4W) - Element 1 U1 900Vami U1 900Vami SWR 500Wami SWR 500Wami U2 900Vami 12 E 500Wami SWR 500Wami 13 E 500Wami 15 E 500Wami 500Wami 15 E 500Wami 500
Update 37 (500msec) Normal Mode	Peak Over In INCIDENTIAL INCIDENT INC	eg: Reset YOKOGAWA ◆ PLL: III 49.979 Hz	37 (500msec)		
FPLL1:UA	Order U6 [V] Order [N] Order U6 [V] Total 220.44 100.000 2 0.04 3 2.22 1.005 4 0.07 5 3.24 1.469 6 0.02 7 0.38 0.173 8 0.02 9 0.47 0.214 12 0.01 13 0.18 0.081 14 0.02 15 0.29 0.133 16 0.02 17 0.53 0.241 18 0.02 19 0.10 0.045 20 0.02 21 0.12 0.046 22 0.02 23 0.29 0.132 24 0.01 25 0.10 0.046 22 0.02 27 0.08 0.037 28 0.00 31 0.12 0.06 32 0.04 31 0.12 0.05 32 0.04	SA(3P4W) Element 1 SOM/4000			
Opdate 37 (500msec) 6.4.3.2			d: Stored energy mod	e - Full load	Р
UPS runs	test conditions / test of in battery mode, apply	ying 100 % non-linea		put, then measure	output
oltage and its	s fundamental and har	·			
Load (%)	Harmonic No.	Phase 1 (%)	Phase 2 (%)	Phase 3 (%)	
100	3	1.155	1.113	1.126	
100	5	1.457	1.510	1.479	
100	7	0.140	0.164	0.155	
100	r				
	9	0.198	0.245	0.206	

TRF No.: IEC62040_3C Page 51 of 71 Report No.: ENS2407180144P00101R Ver.1.0

			IEC	62040-3				
Clause	Rec	quirement + Test				Result - Rema	ark	Verdict
see formula THD below	to	1.960%	1.9979	%		1.962%	< 5.5%	
THD =10	'	$\left(10^{\frac{3^{\circ}}{20}}\right)^{2} + \left(10^{\frac{5^{\circ}}{20}}\right)^{2} + $	$\left(10^{\frac{7^{\circ}}{20}}\right)^{2} + \left(10^{\frac{9^{\circ}}{20}}\right)^{2}$					
Normal Mode	Peca Pe	Cover Cove	Reset YONQAWA ◆ PIL: IEE 49.994 Hz	fPLL1:U4 49.9 Urms5 220. Irms5 0.45 P5 95. S5 100. Q5 31. λ5 0.95 Φ6 G18. Uthd5 1.9. Uthd5 1.9. Uthf5 2.8. Utif5 21.5 Utif5 21.5 Itif5 88.0	62 V 453 kA 45 kW 44 kVA 28 kvar 03 14 ° 197 % 165 % 191 % 198 % 199 % 1	Peak Over LIGHT STATE Control of the Control of t	Filter Us (V) Ndf(X)	TOCKOGAWA PIL : III 9394 II2 CF: 3 ZA(3*4W) Lemont 5 SAMIN LEMONT 2 U2 3010 12 E 50m/MIN Syns SceIII Elemont 2 U3 1.5/Jamin Syns SceIII Elemont 3 2 E(3*4W) Lemont 3 Self 5 Som/MIN Syns SceIII Elemont 5 U4 2 50m/MIN Syns SceIII Elemont 5 U5 300/MIN U4 E 50m/MIN Syns SceIII Elemont 5 U5 300/MIN I5 E 50m/MIN Syns SceIII Elemont 5 U5 300/MIN I5 E 50m/MIN I6 E 50m/MIN Syns SceIII Elemont 5 U5 300/MIN I6 E 50m/MIN I7 E 50m/MIN I8 E 50m/MIN I8 E 50m/MIN Syns SceIII Elemont 5 U6 300/MIN I8 E 50m/MIN Syns SceIII Elemont 5 U8 300/MIN I8 E 50m/MIN Syns SceIII Elemont 6 U8 300/MIN I8 E 50m/MIN III Elemont 6 U8 300/MIN II Elemont 7 II Elemont 8 II Elemont 9 II

TRF No.: IEC62040_3C Page 52 of 71 Report No.: ENS2407180144P00101R Ver.1.0



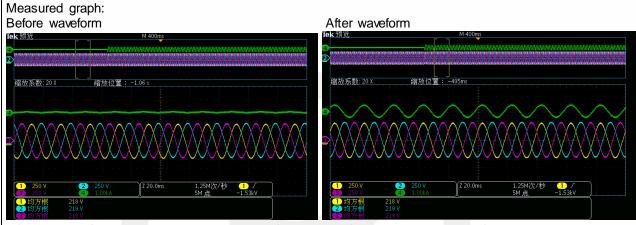
	IEC 62040-3		
Clause	Requirement + Test	Result - Remark	Verdict

6.4.3.3.1	TABLE: - Reference non-linear load – Normal to stored energy mode - AC input failure test	Р

Description of test conditions / test construction:

- 1) UPS initially operating at full non-linear load in normal mode, the input supply shall be interrupted, then UPS transfers to battery mode;
- 2) Check the system when the utility failure normal operation. Measure the transient output voltage deviation.

TRF No.: IEC62040_3C Page 53 of 71 Report No.: ENS2407180144P00101R Ver.1.0



	IEC 62040-3		
Clause	Requirement + Test	Result - Remark	Verdict

6.4.3.3.2 TABLE: - Reference non-linear load – Stored energy to normal mode -

Description of test conditions / test construction:

- 1) UPS initially operating at full non-linear load in battery mode, the input supply shall be recovery, then UPS transfers to normal mode.
- 2) Check the system when the utility response normal operation. Measure the transient output voltage deviation.

Channel 1 - Output Voltage_A Channel 2 - Output Voltage_B Channel 3 - Output Voltage Phase C Channel 4 - Input Current Phase A

Power	Respon	on Before (V)			After (V)			Deviation < 5%		
Type	se procedu re	Α	В	С	А	В	С	deviatio n Phase A	deviatio n Phase B	deviation Phase C
220V/50 Hz	Battery to Normal	218.0	219.0	219.0	218.0	219.0	219.0	0	0	0

6.4.3.3.3.a TABLE: - Reference non-linear load steps — Normal mode ≤ 4.0 kVA rating

N/A

Ρ

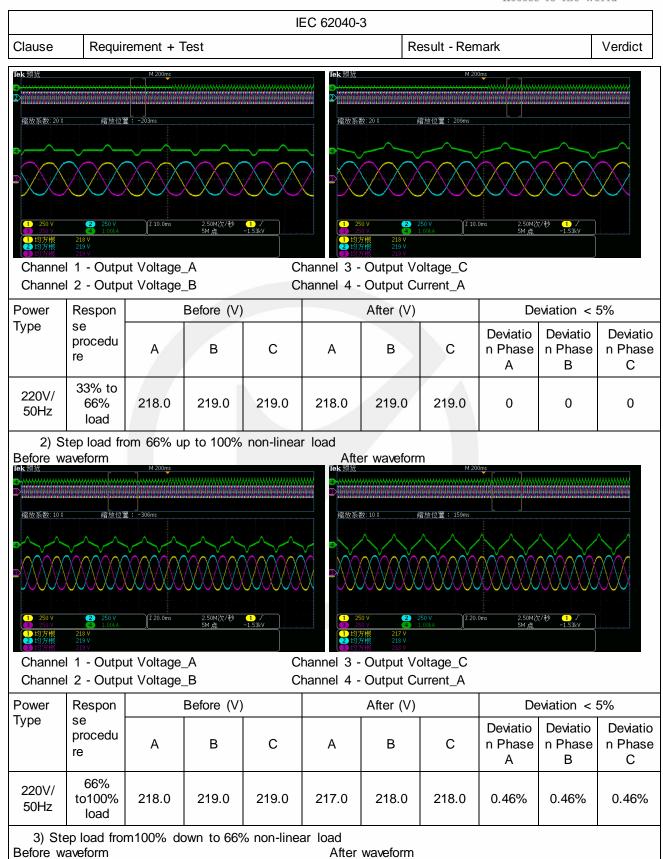
Description of test conditions / test construction:

Measured graph:

6.4.3.3.3.b TABLE: - Reference non-linear load steps – Normal mode > 4.0 kVA rating

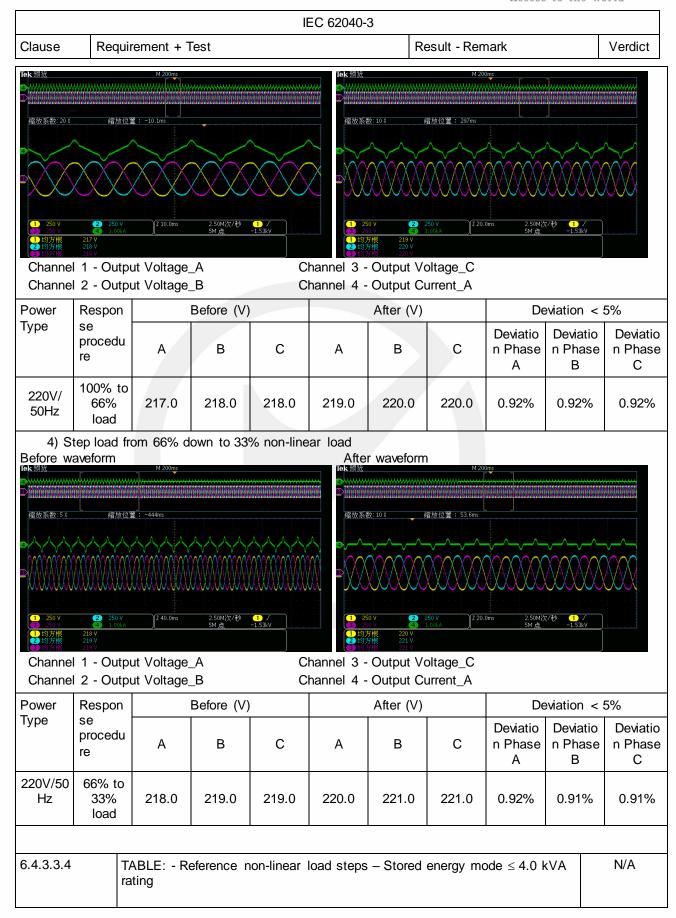
Description of test conditions / test construction:

- 1) Impact linear load as defined 33 %=> 66%=100 %=> 66 %=> 33% non-linear load with 220V/50Hz in normal mode.
- 2) Check the transient response.


Measured graph:

1) Step load from 33% up to 66% non-linear load

Before waveform After waveform


TRF No.: IEC62040_3C Page 54 of 71 Report No.: ENS2407180144P00101R Ver.1.0

TRF No.: IEC62040 3C Page 55 of 71 Report No.: ENS2407180144P00101R Ver.1.0

TRF No.: IEC62040 3C Page 56 of 71 Report No.: ENS2407180144P00101R Ver.1.0

	IEC 62040-3		
Clause	Requirement + Test	Result - Remark	Verdict

Description of test conditions / test construction: test repeated according to sub-clause 6.4.3.3.3.a

Measured graph:

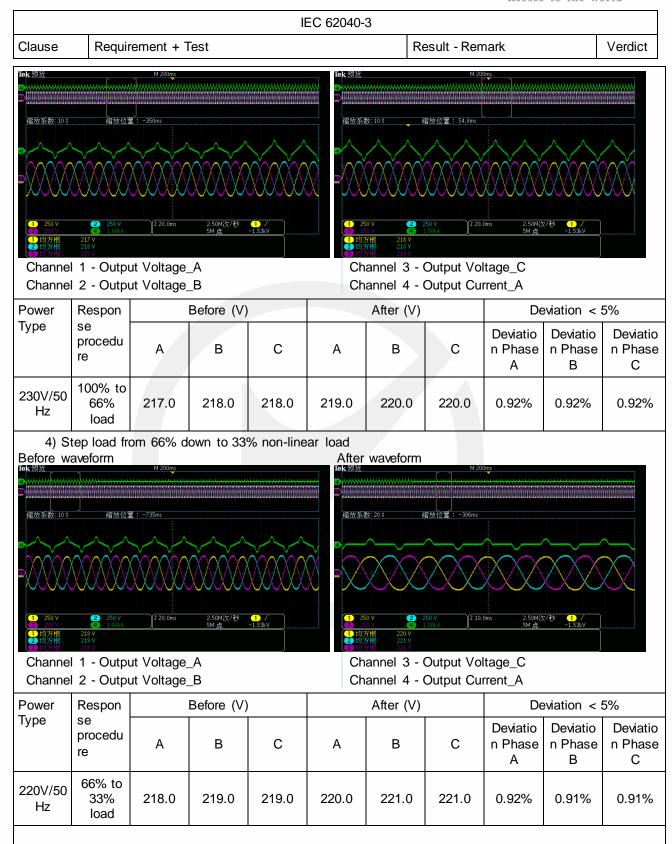
6.4.3.3.4 TABLE: - Reference non-linear load steps – Stored energy mode > 4.0 kVA rating

Description of test conditions / test construction: test repeated according to sub-clause 6.4.3.3.3.b

- 1) Impact linear load as defined 33 %=> 66%=100 %=> 66 %=> 33% non-linear load with 220V/50Hz in battery mode.
- 2) Check the transient response

Measured graph:

1) Step load from 33% up to 66% non-linear load


Channel 1 - Output Voltage_A Channel 2 - Output Voltage_B Channel 3 - Output Voltage_C Channel 4 - Output Current_A

Power Type	Respon	Respon Before (V)			After (V)			Deviation < 5%		
	se procedu re	А	В	С	А	В	С	Deviatio n Phase A	Deviatio n Phase B	Deviatio n Phase C
220V/50 Hz	33% to 66% load	218.0	220.0	219.0	218.0	219.0	219.0	0	0.45%	0

2)Step load from 66% up to 100% non-linear load
Before waveform After waveform

TRF No.: IEC62040_3C Page 57 of 71 Report No.: ENS2407180144P00101R Ver.1.0

TRF No.: IEC62040 3C Page 58 of 71 Report No.: ENS2407180144P00101R Ver.1.0

		IEC 62040-3		
Clause	Requirement + Test		Result - Remark	Verdict

6.4.2.12 TABLE: Simulation of parallel redundant UPS fault test N/A

Description of test conditions / test construction:

Measured graph:

6.5.2.2 TABLE: Free fall test

Р

Description of test conditions / test construction: test repeated according to sub-clause 6.5.2.2.

- 1) The method of test shall be as in IEC 60068-2-31.
- 2) The UPS is non-operational during the test and packed in its normal shipping state for transportation.
- 3) After the test, perform light load and functional test routine test

Measured graph:

Test results:

Free fall No.	Height of fall (mm)	Observations
1	25	No damage. UPS function is normal.
2	25	No damage. UPS function is normal.

6.5.3 TABLE: Storage

Ρ

Description of test conditions / test construction: test repeated according to sub-clause 6.5.3.

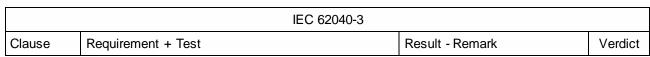
- 1) The UPS is not operational, but packed in its normal shipping state for transportation and storage with controls set in shipping state.
- 2) Dry heat as per the normal environmental conditions: +70 °C±2 °C for a duration of 16 h using the test method Bb of IEC 60068-2-2.
- 3) Damp heat as per the normal environmental conditions: +40 °C±2 °C at a humidity of 90 % to 95 % for a duration of 96 h using IEC 60068-2-78.
- 4) Cold as per the normal environmental conditions: -40 °C±3 °C for a duration of 16 h where practicable using test method Ab of IEC 60068-2-1.
- 5) Damp heat repeated.
- 6) After the test, perform light load and functional test routine test

Measured graph:

1) Before Testing

TRF No.: IEC62040 3C Page 59 of 71 Report No.: ENS2407180144P00101R Ver.1.0

		IEC 62040-3		
Clause	Requirement + Test		Result - Remark	Verdict

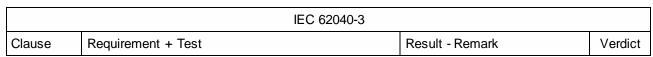

Testing
 Dry heat as normal environmental conditions: +70 °C

3) Damp heat as per the normal environmental conditions: +40 °C at a humidity of 95 %

TRF No.: IEC62040_3C Page 60 of 71 Report No.: ENS2407180144P00101R Ver.1.0

4) Cold as per the normal environmental conditions: -40 °C

CONSTANT


5) Damp heat as per the normal environmental conditions: +40 °C at a humidity of 95 %

6) After the test, perform light load and functional test, routine test, all pass.

TRF No.: IEC62040_3C Page 61 of 71 Report No.: ENS2407180144P00101R Ver.1.0

6.5.4 TABLE: Operation

Description of test conditions / test construction: test repeated according to sub-clause 6.5.4.

- 1) The UPS works in normal mode of operation at rated input voltage and rated output apparent power.
- 2) Dry heat as per the normal environmental conditions or as per the manufacturer's state maximum temperature: +40 °C±2 °C for a duration of 16 h using the test method Bb of IEC 60068-2-2.
- 3) Damp heat as per the normal environmental conditions: +30 °C±2 °C at a humidity of 90 % to 95 % for a duration of 96 h using IEC 60068-2-78.
- 4) Cold as per the normal environmental conditions or as per the manufacturer's state minimum temperature: 0 °C±3 °C for a duration of 2 h where practicable using test method Ab of IEC 60068-2-1.
- 5) Damp heat repeated.
- After the tests, the UPS shall work in accordance with the light load and functional test routine test (see 6.2.2.3) and meet applicable constructional safety requirements.

Measured graph:

1) Dry heat as normal environmental conditions, temperature: +40 °C

TRF No.: IEC62040_3C Page 62 of 71 Report No.: ENS2407180144P00101R Ver.1.0

IEC 62040-3

Clause Requirement + Test Result - Remark Verdict

2) Damp heat as normal environmental conditions, temperature: +40 °C at a humidity of 95%

3) Cold as normal environmental conditions, temperature: 0 °C

TRF No.: IEC62040_3C Page 63 of 71 Report No.: ENS2407180144P00101R Ver.1.0

IEC 62040-3

Clause Requirement + Test Result - Remark Verdict

4) Damp heat as normal environmental conditions, temperature: +40 °C at a humidity of 95%

Mode	Before testing	After testing	
Normal mode	Input voltage: 220.1V Input frequency: 49.98Hz Output power: 300kVA	Input voltage: 220.5V Input frequency: 49.97Hz Output power: 300kVA	
Stored energy mode	Output power: 300kVA	Output power: 300kVA	
Bypass mode	Input voltage: 220.1V Input frequency: 49.98Hz Output power: 300kVA	Input voltage: 220.3V Input frequency: 49.98Hz Output power: 300kVA	

6.5.5	TABLE: Acoustic noise	Р

Description of test conditions / test construction: test repeated according to sub-clause 6.5.5.

- 1) The acoustic noise level that shall be measured in accordance with the method of measurement specified in ISO 7779 and governed by the normal positioning expected in use.
- 2) The UPS works in normal mode of operation at rated input voltage and rated output apparent

TRF No.: IEC62040_3C Page 64 of 71 Report No.: ENS2407180144P00101R Ver.1.0

		IEC 62040-3		
Clause	Requirement + Test		Result - Remark	Verdict

power.

- 3) The acoustic noise level shall be referred to the 1 m distance and stated in dBA (dB referenced to acoustic weighing scale A obtained from a sound level meter complying with IEC 61672-1).
- 4) Acoustic noise < 80dB

Measured graph:

Test point	1	2	3	4	Expected value due to the specification of the manufacturer
Acoustic noise (dB)	69.2	70.1	71.5	69.5	<72 dB

TRF No.: IEC62040_3C Page 65 of 71 Report No.: ENS2407180144P00101R Ver.1.0

IEC 62040-3

Clause Requirement + Test Result - Remark Verdict

Clause	INCO	quireinent + rest			11000	it - IXelliaik		Verdict		
	TAE	BLE: List of critica	al components					Р		
Object/part	no.	Manufacturer/ trademark	Type/model	Те	chnical data	Standard	Mark(s)	of nity ^{1.}		
			Who	le ı	unit					
Enclosure		Various	Various		Steel/Alumi nium					
AC fan		EBMPAPST	R2E225BD9209		AC230V, 0.6A, 135W		(CE		
Insulation sheet		FORMEX	Formex GK-10				E25626	JL: 66/E1218 55		
SCR		SEMIKRON	SKKT570_16E		570A 1600V					
wire		Various	Various				UL: E	314168		
			ON ASY01_	PS	1203_DR6					
X2 capacite (C29, C30, C31, C32)		Faratronic	C42P2474K9S0 00					<u> </u>		186600 40000358
Transforme (T1, T2, T3		SIDNA	UMS33P1T2	UMS33P1T2				t with liance		
Optocouple (U2, U3)	ers	NEC	PS2561L-1-V-F3 A-L	3-		-	UL:E	72422,		
Relay (RLY1, RL	Y2)	SONGCHUAN	894H-2AH1 F-	.C	12V 12A	\		E88991 10007827		
FUSE (F1, F2, F3	3)	Hollyland	65NM070H		7A/250VAC		UL: E	156471		
PCB		Various	Various		V-0, 130℃		ı	UL		
			ON ASY01_	PS	1203_DR9		1			
PCB		Various	Various		V-0, 130℃		ı	UL		
		1	ON ASY01_	PS	1203_KY1	1	I			
PCB		Various	Various		V-0, 130℃			UL		
		1	ON ASY01_	PS	1203_MN1	·	1			
Y2 capacite (C143)	Y2 capacitor (C143)		CS11- E2GA222MYN S		250VAC/ 2200pF	IEC 60384- 14		E37861 124321		
Transforme (T1)	er	Boulder	UMX33MN1T1		CLASS B			t with liance		
FUSE (F1)		Hollyland	50CF F630mAH 250V		630mAH 250V		UL: E	156471		

TRF No.: IEC62040_3C Page 66 of 71 Report No.: ENS2407180144P00101R Ver.1.0

	IEC	C 62040-3		
Clause	Requirement + Test		Result - Remark	Verdict

L L			l .		l l			
PCB	Various	Various	V-0, 130℃		UL			
		ON ASY01_I	PS1203_PW3					
DC capacitor (C7,C8)	Jianghai	CD293-220UF	450V, 820uF, 85℃		UL			
X2 capacitor (C1,C2)	Faratronic	C42P2474K9S C000	0.47µF,275VAC		UL:E186600 VDE:40000358			
Y2 capacitor (C11,C12,C61)	TDK	CS11- E2GA222MYN S	250VAC/ 2200pF	IEC 60384- 14	UL:E37861 VDE:124321			
Y1 capacitor (C3,C4,C5,C6, C59,C60)	TDK	CD16- E2GA472MYG S	4.7Nf,400Vac		UL:E37861 VDE:124321			
Transformer (T1)	SIDNA	UMS33P1T2	Class B		Test with appliance			
Transformer (T3)	Boulder	UMXPS3T1	CLASS B	_	Test with appliance			
РСВ	Various	Various	V-0, 130℃		UL			
		ON ASY01_	PS1203_TF2					
PCB	Various	Various	V-0, 130℃		UL			
		ON ASY01	PS1203_TF3					
Optocouplers (U6,U7,U8,U9, U10,U11,U12, U13,U19)	NEC	PS2561L-1-V- F3-A-L			UL: E72422,			
Optocouplers (U20)	AVAGO	HCNR201			UL: E55361			
Relay (RLY1,RLY2,R LY3,RLY4)	SONGCHUAN	892-1CC-C- 24VDC	24V 3A	\	UL: E88991 VDE: 40006318			
PCB	Various	Various	V-0, 130℃		UL			
	1	ON ASY01_	_PS1203_TF4		1			
РСВ	Various	Various	V-0, 130℃		UL			
	1	ON ASY01_	_PS1203_TF6		1			
PCB	Various	Various	V-0, 130°C		UL			
	I	ON ASY01_	_PS1503_TF1		1			
PCB	Various	Various	V-0, 130℃		UL			
	1	ON ASY01	 _PS1503_TF2	1				

TRF No.: IEC62040_3C Page 67 of 71 Report No.: ENS2407180144P00101R Ver.1.0

V-0, 130℃

UL

						Access	to the W	orid						
			IEC 62	2040-3										
Clause	e Requirement + Test					Result - Remark								
РСВ		Various	Various	V-0, 130℃		V-0, 130°C		V-0, 130℃		V-0, 130℃			l	JL
			ON ASY01_	PS1507_EM	12									
Y2 capacit		TDK	CS11- E2GA222MYN S	250VAC/	2200pF	IEC 60384- 14		37861 124321						
X2 capacitor (C11,C12,C13, C14,C15,C16)		Faratronic	C42P2565- BSC000	250VAC/ 5.6µF		250VAC/ 5.6μF		250VAC/ 5.6μF				186600 0000358		
РСВ		Various	Various	V-0, 130℃			UL							
			ON ASY01_	PS1507_EM	13									
FUSE (F1,F2,F3)		BUSSMANN	BK-GBH- V030A6FR	30A/500VAC			UL: E	56412						
PCB		Various	Various	V-0, 13	30℃		l	JL						
			ON SNT_DL	_3320_FR_0)1									
X2 capacit (C1,C2,C3		Faratronic	C43Q1224MB 0C450	250VAC/ 0.22µF				186600 0000358						
Y2 capacit (C5,C6,C7 C9,C10,C1 12,C13,C1	,C8, 1,C	TDK CS11- E2GA222MYN 250VAC/ 2200p S		2200pF	IEC 60384- 14		37861 124321							

Various

PCB

Various

TRF No.: IEC62040_3C Page 68 of 71 Report No.: ENS2407180144P00101R Ver.1.0

Attachment: Photos

External view

External view

TRF No.: IEC62040_3C Page 69 of 71 Report No.: ENS2407180144P00101R Ver.1.0

Attachment: Photos

Access to the World

External view

TRF No.: IEC62040_3C Page 70 of 71 Report No.: ENS2407180144P00101R Ver.1.0

Statement

1.	This report will be void without authorized signature or special seal for testing report.
2 .	This report shall not be copied partly without authorization.
3.	The test results or observations are applicable only to tested sample. Client shall be responsible for representativeness of the sample and authenticity of the material.
4.	The observations or tests with special mark fall outside the scope of accreditation, and are only used for purpose of commission, research, training, internal quality control etc.
5.	The test results or observations are provided in accordance with measured value, without taking risks caused by uncertainty into account. Without explicit stipulation in special agreements, standards or regulations, EMTEK shall not assume any responsibility.
6.	Objections shall be raised within 20 days from the date receiving the report.

TRF No.: IEC62040_3C Page 71 of 71 Report No.: ENS2407180144P00101R Ver.1.0